当前位置:   article > 正文

K-Means算法实现物流配送问题_聚类分析物流配送

聚类分析物流配送

五辆货车给50个客户配送货物
通过K-Means算法将地址聚成五类,分配货车

#conding=utf-8
from numpy import *
from matplotlib import pyplot as plt


# 计算两个向量的欧式距离
def distEclud(vecA, vecB):
    return sqrt(sum(power(vecA - vecB, 2)))


# 选取k个点作为种子
def initCenter(dataSet, k):
    print('2.initialize cluster center...')
    # .shape返回一个元组,表示矩阵的维度
    shape = dataSet.shape
    n = shape[1]  # 列数
    classCenter = array(zeros((k, n)))
    # 选取k个数据点作为初始聚类中心
    for j in range(n):
        firstK = dataSet[:k, j]
        classCenter[:, j] = firstK
    return classCenter


# 实现K-Means算法
def myKMeans(dataSet, k):
    m = len(dataSet)  # 行数
    # 各簇中的数据点
    clusterPoints = array(zeros((m, 2)))
    # 各簇中心
    classCenter = initCenter(dataSet, k)
    clusterChanged = True
    print('3.recompute and reallocated...')
    while clusterChanged:
        clusterChanged = False
        # 将每个数据点分配到最近的簇
        for i in range(m):
            minDist = inf
            minIndex = -1
            for j in range(k):
                distJI = distEclud(classCenter[j, :], dataSet[i, :])
                if distJI < minDist:
                    minDist = distJI;minIndex = j
            if clusterPoints[i, 0] != minIndex:
                clusterChanged = True
            clusterPoints[i, :] = minIndex, minDist**2
        # 重新计算簇中心
        for cent in range(k):
            ptsInClust = dataSet[nonzero(clusterPoints[:, 0]==cent)[0]]
            classCenter[cent, :] = mean(ptsInClust, axis=0)
    return classCenter, clusterPoints


# 显示聚类结果
def show(dataSet, k, classCenter, clusterPoints):
    print('4.load the map...')
    fig = plt.figure()
    rect = [0.1, 0.1, 1.0, 1.0]
    axprops = dict(xticks=[], yticks=[])
    ax0 = fig.add_axes(rect, label='ax0', **axprops)
    imgP = plt.imread('city.png')
    ax0.imshow(imgP)
    ax1 = fig.add_axes(rect, label='ax1', frameon=False)
    print('5.show the clusters...')
    numSamples = len(dataSet)
    mark = ["ok", "^b", "om", "og", "sc"]
    # 根据每个对象的坐标绘制点
    for i in range(numSamples):
        markIndex = int(clusterPoints[i, 0]) % k
        ax1.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
    # 标记每个簇的中心点
    for i in range(k):
        markIndex = int(clusterPoints[i, 0]) % k
        ax1.plot(classCenter[i, 0], classCenter[i, 1], '^r', markersize=12)
    plt.show()


print('1.load dataset...')
dataSet = loadtxt('testSet.txt')
K = 5
classCenter, classPoints = myKMeans(dataSet, K)
show(dataSet, K, classCenter, classPoints)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83

运行结果
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/548987
推荐阅读
相关标签
  

闽ICP备14008679号