赞
踩
在数字化时代,人工智能(AI)正以惊人的速度渗透到各个行业中。而对于码农们来说,AI已经成为他们日常工作中不可或缺的助手。然而,今天我要为大家介绍一款与众不同的助手,结合 开源 vscode 网页版code-server 和 开源 AI 助手 Tabby, 提供一个功能丰富、可定制的编程环境,帮助你更好地进行编码工作。
为了获得更灵活、成本效益更高的解决方案,我选择将 code-server 和 Tabby 部署到自己的服务器上。以下是一些原因:
温馨提示,注意先别着急安装,先看下文,看下文,下文,文!!!
安装brew:首先,你需要在你的Mac上安装Homebrew(brew),它是一个流行的包管理器。你可以在Homebrew的官方网站(https://brew.sh)上找到安装说明。
安装code-server:使用brew,你可以通过运行以下命令来安装code-server:
brew install code-server
这将从Homebrew仓库中下载和安装code-server。
安装Docker:接下来,你需要安装Docker,它是一个开源的容器化平台。你可以访问 Docker 的官方网站(https://www.docker.com)并按照他们的指南来安装Docker。
配置和启动code-server:一旦安装了code-server,你可以使用以下命令来启动它:
code-server
# 或者使用 launchctl load xxx 忘记了来设置开机启动,MAC 设置为通电启动
这将在默认端口(通常是 127.0.0.1:8080)上启动code-server,并在浏览器中访问它。
安装Java开发所需的插件:为了进行Java开发,你需要在code-server上安装适用于Java的插件。其中一个常用的插件是"Extension Pack for Java",它是一个包含了多个Java开发相关插件的扩展包。你可以在VS Code Marketplace(https://marketplace.visualstudio.com)中搜索并安装该插件。安装后,它将提供Java开发所需的工具和功能。
安装Tabby插件:为了在code-server上使用Tabby,你需要安装Tabby插件。Tabby插件将为你提供与Tabby的集成,使你可以在code-server中访问Tabby的功能。你可以在VS Code Marketplace中搜索"Tabby"插件,并按照安装说明进行安装。
你没有M1/M2,使用 Docker 在自己的服务器上部署Tabby:为了使用Docker部署 Tabby,你需要从Tabby的官方源代码中构建Docker镜像。你可以在Tabby的GitHub存储库(https://github.com/tabby-lang/tabby)中找到源代码和构建说明。
docker run --name tabby -it -d --network=host -v /Users/apple/data:/data -v /Users/apple/data/hf_cache:/home/app/.cache/huggingface tabbyml/tabby serve --model TabbyML/SantaCoder-1B
你有M1/M2:Mac 人提供了编译好的二进制包,直接下载使用
现在,你已经 “成功” 地在Mac上安装了brew、code-server和Docker,并部署了Tabby。你可以通过访问code-server的URL和指定的Tabby端口来访问这个完整的开发环境。
我坚信,我们应该成为AI的驾驭者,而不是被替代,通过与 AI 技术的深度交互,我们应该更好地驾驭它,将其作为我编程的有力助手。
虽然按照之前提到的步骤,你可能会遇到Tabby后端无法正常运行的问题。
最后是结论。由于博主没有额外的Nvidia GPU电脑,我的电脑只有MX250 GPU,并且其中存有重要的学习资料,所以我选择了租用GPU云服务器的方式进行实际测试。
最后是结论:如果你想拥有一套内网安全的与众不同的 AI 编码助手,即code-server + tabby,你需要一台M2(官网表示M1/M2适用于个人使用),或者一台性能相当于GTX 1060左右的服务器(T4云服务器性能相当于GTX 1650)。
对于显卡方面的建议,个人可能对其了解不深。根据网上的资料,博主找到了一些价格在 5k 人民币以下的迷你小主机:
另外,博主个人喜欢玩 Blender,所以可能更倾向于 N 卡。M2 的优势在于低功耗,感觉也不错,更安静省电。
综上所述,选择适合自己需求的显卡或服务器是个人决策。不同的显卡具有不同的性能特点和优势。建议大家根据自己的预算、需求和偏好做出选择。请注意,技术和市场在不断发展变化,所以在做出决策之前最好进行进一步的研究和咨询。
感谢您的祝福!希望大家都能在使用 code-server 和 tabbyml-演示环境 的过程中玩得开心并获得所需的帮助。如果有任何测试结果不如意或其他问题,可以在评论区中寻求帮助,博主可能无法直接解决所有问题。祝愿大家能够充分利用这些工具,提高工作效率和编码体验!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。