赞
踩
目录
- pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
-
- pip install tokenizers==0.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
- # 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`
-
- pip install mindnlp
nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。
- article: [CLS] article_context [SEP]
- summary: [CLS] summary_context [SEP]
[CLS] article_context [SEP] summary_context [SEP]
因GPT2无中文的tokenizer,使用BertTokenizer替代。代码如下:
- from mindspore.dataset import TextFileDataset
- import json
- import numpy as np
- from mindnlp.transformers import BertTokenizer
-
-
- # preprocess dataset
- def process_dataset(dataset, tokenizer, batch_size=6, max_seq_len=1024, shuffle=False):
- def read_map(text):
- data = json.loads(text.tobytes())
- return np.array(data['article']), np.array(data['summarization'])
-
- def merge_and_pad(article, summary):
- # tokenization
- # pad to max_seq_length, only truncate the article
- tokenized = tokenizer(text=article, text_pair=summary,
- padding='max_length', truncation='only_first', max_length=max_seq_len)
- return tokenized['input_ids'], tokenized['input_ids']
-
- dataset = dataset.map(read_map, 'text', ['article', 'summary'])
- # change column names to input_ids and labels for the following training
- dataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])
-
- dataset = dataset.batch(batch_size)
- if shuffle:
- dataset = dataset.shuffle(batch_size)
-
- return dataset
-
-
- # load dataset
- dataset = TextFileDataset(str(path), shuffle=False)
- print(dataset.get_dataset_size()) ### 50000
-
- # split into training and testing dataset
- train_dataset, test_dataset = dataset.split([0.9, 0.1], randomize=False)
- print(len(train_dataset)) ### 45000
-
- # We use BertTokenizer for tokenizing chinese context.
- tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
- len(tokenizer)
-
- train_dataset = process_dataset(train_dataset, tokenizer, batch_size=4)
- ## next(train_dataset.create_tuple_iterator())
-
-
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
如下,通过两个类实现:
- from mindspore import ops
- from mindnlp.transformers import GPT2LMHeadModel
- from mindspore.nn.learning_rate_schedule import LearningRateSchedule
-
- from mindspore import nn
- from mindnlp.transformers import GPT2Config, GPT2LMHeadModel
- from mindnlp._legacy.engine import Trainer
- from mindnlp._legacy.engine.callbacks import CheckpointCallback
-
-
-
- class GPT2ForSummarization(GPT2LMHeadModel):
- def construct(
- self,
- input_ids = None,
- attention_mask = None,
- labels = None,
- ):
- outputs = super().construct(input_ids=input_ids, attention_mask=attention_mask)
- shift_logits = outputs.logits[..., :-1, :]
- shift_labels = labels[..., 1:]
- # Flatten the tokens
- loss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)
- return loss
-
-
- class LinearWithWarmUp(LearningRateSchedule):
- """
- Warmup-decay learning rate.
- """
- def __init__(self, learning_rate, num_warmup_steps, num_training_steps):
- super().__init__()
- self.learning_rate = learning_rate
- self.num_warmup_steps = num_warmup_steps
- self.num_training_steps = num_training_steps
-
- def construct(self, global_step):
- if global_step < self.num_warmup_steps:
- return global_step / float(max(1, self.num_warmup_steps)) * self.learning_rate
- return ops.maximum(
- 0.0, (self.num_training_steps - global_step) / (max(1, self.num_training_steps - self.num_warmup_steps))
- ) * self.learning_rate
-
-
- ## 训练参数设置
- num_epochs = 1
- warmup_steps = 2000
- learning_rate = 1.5e-4
-
- num_training_steps = num_epochs * train_dataset.get_dataset_size()
-
-
- config = GPT2Config(vocab_size=len(tokenizer))
- model = GPT2ForSummarization(config)
-
- lr_scheduler = LinearWithWarmUp(
- learning_rate=learning_rate,
- num_warmup_steps=warmup_steps,
- num_training_steps=num_training_steps)
- optimizer = nn.AdamWeightDecay(model.trainable_params(),
- learning_rate=lr_scheduler)
-
- # 记录模型参数数量
- print('number of model parameters: {}'.format(model.num_parameters()))
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
1. 1级主类:GPT2ForSummarization
2. 2级类:GPT2Model 层,是transformer 结构,是模型的核心部分。
3. 2级类:lm_head 结构的 Dense 全连接层 , dim[in, out]=[768, 21128]。
4. GPT2Model 结构下的3级类组件分三层:
>> wte 嵌入层:dim[in, out]=[21128, 768] ,即使用了 21128 个词汇,每个词汇映射到一个768 维的向量。
>> wpe 嵌入层:dim[in, out]=[1024, 768]
>> drop 层。
>> layers h 隐网络结构层:Transformer模型的主体,包含 12 个 GPT2Block。
>> ln_f LayerNorm 最后的层归一化。
5. GPT2Block 的结构:
》》ln_1 LayerNorm层,层归一化,用于在注意力机制之前对输入进行归一化。
》》attn GPT2Attention层,自注意力机制,用于计算输入序列中不同位置的注意力权重。共包括3层:Conv1D、Conv1D、CustomDropout、CustomDropout。
》》ln_2 LayerNorm层,用于自注意力之后的归一化。
》》mlp GPT2MLP层,多层感知机,用于对自注意力层的输出进行进一步的非线性变换。这里使用的操作包括:Conv1D、Conv1D、GELU、CustomDropout。
- $ print(model)
-
- GPT2ForSummarization<
- (transformer): GPT2Model<
- (wte): Embedding<vocab_size=21128, embedding_size=768, use_one_hot=False, weight=Parameter (Tensor(shape=[21128, 768], dtype=Float32, value=[...], name=transformer.wte.weight), requires_grad=True), dtype=Float32, padding_idx=None>
- (wpe): Embedding<vocab_size=1024, embedding_size=768, use_one_hot=False, weight=Parameter (Tensor(shape=[1024, 768], dtype=Float32, value=[...], name=transformer.wpe.weight), requires_grad=True), dtype=Float32, padding_idx=None>
- (drop): CustomDropout<>
- (h): CellList<
- (0): GPT2Block<
- (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.0.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.0.ln_1.bias), requires_grad=True)>
- (attn): GPT2Attention<
- (c_attn): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (attn_dropout): CustomDropout<>
- (resid_dropout): CustomDropout<>
- >
- (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.0.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.0.ln_2.bias), requires_grad=True)>
- (mlp): GPT2MLP<
- (c_fc): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (act): GELU<>
- (dropout): CustomDropout<>
- >
- >
- (1): GPT2Block<
- (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.1.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.1.ln_1.bias), requires_grad=True)>
- (attn): GPT2Attention<
- (c_attn): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (attn_dropout): CustomDropout<>
- (resid_dropout): CustomDropout<>
- >
- (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.1.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.1.ln_2.bias), requires_grad=True)>
- (mlp): GPT2MLP<
- (c_fc): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (act): GELU<>
- (dropout): CustomDropout<>
- >
- >
- (2): GPT2Block<
- (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.2.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.2.ln_1.bias), requires_grad=True)>
- (attn): GPT2Attention<
- (c_attn): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (attn_dropout): CustomDropout<>
- (resid_dropout): CustomDropout<>
- >
- (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.2.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.2.ln_2.bias), requires_grad=True)>
- (mlp): GPT2MLP<
- (c_fc): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (act): GELU<>
- (dropout): CustomDropout<>
- >
- >
- (3): GPT2Block<
- (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.3.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.3.ln_1.bias), requires_grad=True)>
- (attn): GPT2Attention<
- (c_attn): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (attn_dropout): CustomDropout<>
- (resid_dropout): CustomDropout<>
- >
- (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.3.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.3.ln_2.bias), requires_grad=True)>
- (mlp): GPT2MLP<
- (c_fc): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (act): GELU<>
- (dropout): CustomDropout<>
- >
- >
- (4): GPT2Block<
- (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.4.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.4.ln_1.bias), requires_grad=True)>
- (attn): GPT2Attention<
- (c_attn): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (attn_dropout): CustomDropout<>
- (resid_dropout): CustomDropout<>
- >
- (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.4.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.4.ln_2.bias), requires_grad=True)>
- (mlp): GPT2MLP<
- (c_fc): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (act): GELU<>
- (dropout): CustomDropout<>
- >
- >
- (5): GPT2Block<
- (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.5.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.5.ln_1.bias), requires_grad=True)>
- (attn): GPT2Attention<
- (c_attn): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (attn_dropout): CustomDropout<>
- (resid_dropout): CustomDropout<>
- >
- (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.5.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.5.ln_2.bias), requires_grad=True)>
- (mlp): GPT2MLP<
- (c_fc): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (act): GELU<>
- (dropout): CustomDropout<>
- >
- >
- (6): GPT2Block<
- (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.6.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.6.ln_1.bias), requires_grad=True)>
- (attn): GPT2Attention<
- (c_attn): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (attn_dropout): CustomDropout<>
- (resid_dropout): CustomDropout<>
- >
- (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.6.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.6.ln_2.bias), requires_grad=True)>
- (mlp): GPT2MLP<
- (c_fc): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (act): GELU<>
- (dropout): CustomDropout<>
- >
- >
- (7): GPT2Block<
- (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.7.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.7.ln_1.bias), requires_grad=True)>
- (attn): GPT2Attention<
- (c_attn): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (attn_dropout): CustomDropout<>
- (resid_dropout): CustomDropout<>
- >
- (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.7.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.7.ln_2.bias), requires_grad=True)>
- (mlp): GPT2MLP<
- (c_fc): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (act): GELU<>
- (dropout): CustomDropout<>
- >
- >
- (8): GPT2Block<
- (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.8.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.8.ln_1.bias), requires_grad=True)>
- (attn): GPT2Attention<
- (c_attn): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (attn_dropout): CustomDropout<>
- (resid_dropout): CustomDropout<>
- >
- (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.8.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.8.ln_2.bias), requires_grad=True)>
- (mlp): GPT2MLP<
- (c_fc): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (act): GELU<>
- (dropout): CustomDropout<>
- >
- >
- (9): GPT2Block<
- (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.9.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.9.ln_1.bias), requires_grad=True)>
- (attn): GPT2Attention<
- (c_attn): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (attn_dropout): CustomDropout<>
- (resid_dropout): CustomDropout<>
- >
- (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.9.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.9.ln_2.bias), requires_grad=True)>
- (mlp): GPT2MLP<
- (c_fc): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (act): GELU<>
- (dropout): CustomDropout<>
- >
- >
- (10): GPT2Block<
- (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.10.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.10.ln_1.bias), requires_grad=True)>
- (attn): GPT2Attention<
- (c_attn): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (attn_dropout): CustomDropout<>
- (resid_dropout): CustomDropout<>
- >
- (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.10.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.10.ln_2.bias), requires_grad=True)>
- (mlp): GPT2MLP<
- (c_fc): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (act): GELU<>
- (dropout): CustomDropout<>
- >
- >
- (11): GPT2Block<
- (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.11.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.11.ln_1.bias), requires_grad=True)>
- (attn): GPT2Attention<
- (c_attn): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (attn_dropout): CustomDropout<>
- (resid_dropout): CustomDropout<>
- >
- (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.11.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.11.ln_2.bias), requires_grad=True)>
- (mlp): GPT2MLP<
- (c_fc): Conv1D<
- (matmul): Matmul<>
- >
- (c_proj): Conv1D<
- (matmul): Matmul<>
- >
- (act): GELU<>
- (dropout): CustomDropout<>
- >
- >
- >
- (ln_f): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.ln_f.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.ln_f.bias), requires_grad=True)>
- >
- (lm_head): Dense<input_channels=768, output_channels=21128>
- >
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
- from mindspore import nn
- from mindnlp.transformers import GPT2Config, GPT2LMHeadModel
- from mindnlp._legacy.engine import Trainer
- from mindnlp._legacy.engine.callbacks import CheckpointCallback
-
-
- # 记录模型参数数量
- print('number of model parameters: {}'.format(model.num_parameters()))
-
- ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt2_summarization',
- epochs=1, keep_checkpoint_max=2)
-
- trainer = Trainer(network=model,
- train_dataset=train_dataset,
- epochs=1,
- optimizer=optimizer,
- callbacks=ckpoint_cb)
- trainer.set_amp(level='O1') # 开启混合精度
-
- trainer.run(tgt_columns="labels")
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
注:建议使用较高规格的算力,训练时间较长
此次活动的 notebook 只可以连续运行8小时,此次目的也不是性能优化,故此,我将训练数据减少到了1/10,此时的部分输出如下。
- ## 向量数据转为中文数据
- def process_test_dataset(dataset, tokenizer, batch_size=1, max_seq_len=1024, max_summary_len=100):
- def read_map(text):
- data = json.loads(text.tobytes())
- return np.array(data['article']), np.array(data['summarization'])
-
- def pad(article):
- tokenized = tokenizer(text=article, truncation=True, max_length=max_seq_len-max_summary_len)
- return tokenized['input_ids']
-
- dataset = dataset.map(read_map, 'text', ['article', 'summary'])
- dataset = dataset.map(pad, 'article', ['input_ids'])
-
- dataset = dataset.batch(batch_size)
-
- return dataset
-
-
- test_dataset = process_test_dataset(test_dataset, tokenizer, batch_size=1)
- print(next(test_dataset.create_tuple_iterator(output_numpy=True)))
-
- model = GPT2LMHeadModel.from_pretrained('./checkpoint/gpt2_summarization_epoch_0.ckpt', config=config)
-
- model.set_train(False)
- model.config.eos_token_id = model.config.sep_token_id
- i = 0
- for (input_ids, raw_summary) in test_dataset.create_tuple_iterator():
- output_ids = model.generate(input_ids, max_new_tokens=50, num_beams=5, no_repeat_ngram_size=2)
- output_text = tokenizer.decode(output_ids[0].tolist())
- print(output_text)
- i += 1
- if i == 1:
- break
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
减少训练数据后的模型推理结果展示。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。