当前位置:   article > 正文

百度AipNlp和snownlp计算消费者评论文本的情感分

aipnlp

通过爬虫获取到电商评论文本,计算各个文本的情感分

  1. import pandas as pd
  2. io = r'C:\Users\beauty device comment.xlsx'
  3. data2 = pd.read_excel(io,sheet_name="Sheet1",usecols="A:C")
  4. data2.head(3)

第一种方法:使用snownlp计算

  1. from snownlp import SnowNLP
  2. sentiment_result = []
  3. for sentiobj in data2["评论文本"]:
  4. any_obj = SnowNLP(sentiobj)
  5. sentiment_result.append(any_obj.sentiments)
  6. data2["snownlp情感分"]=sentiment_result

第二种方法:使用百度Aipnlp

  1. from aip import AipNlp
  2. APP_ID = ''
  3. API_KEY = ''
  4. SECRET_KEY = ''
  5. client = AipNlp(APP_ID, API_KEY, SECRET_KEY)
  6. #百度情感评级
  7. #sentiment情感极性分类结果, 0:负向,1:中性,2:正向
  8. sentiment_baidu_result = []
  9. for sentiobj2 in data2["评论文本"]:
  10. any_obj2 = client.sentimentClassify(sentiobj2['items'][0]['sentiment'])
  11. sentiment_baidu_result.append(any_obj2)
  12. data2["百度情感评级"]=sentiment_baidu_result
  1. #百度正向分数
  2. import time
  3. sentiment_baidu_positive = []
  4. for sentiobj2 in data2["评论文本"]:
  5. any_obj2 = client.sentimentClassify(sentiobj2)
  6. sentiment_baidu_positive.append(any_obj2['items'][0]['positive_prob'])
  7. data2["baidu_positive"]=sentiment_baidu_positive
  8. #百度负向分数
  9. sentiment_baidu_negative = []
  10. for sentiobj2 in data2["评论文本"]:
  11. any_obj2 = client.sentimentClassify(sentiobj2['items'][0]['negative_prob'])
  12. sentiment_baidu_negative.append(any_obj2)
  13. data2["baidu_negative"]=sentiment_baidu_negative

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/1004488
推荐阅读
相关标签
  

闽ICP备14008679号