赞
踩
通过爬虫获取到电商评论文本,计算各个文本的情感分
- import pandas as pd
- io = r'C:\Users\beauty device comment.xlsx'
- data2 = pd.read_excel(io,sheet_name="Sheet1",usecols="A:C")
- data2.head(3)
第一种方法:使用snownlp计算
- from snownlp import SnowNLP
- sentiment_result = []
- for sentiobj in data2["评论文本"]:
- any_obj = SnowNLP(sentiobj)
- sentiment_result.append(any_obj.sentiments)
- data2["snownlp情感分"]=sentiment_result
第二种方法:使用百度Aipnlp
- from aip import AipNlp
- APP_ID = ''
- API_KEY = ''
- SECRET_KEY = ''
- client = AipNlp(APP_ID, API_KEY, SECRET_KEY)
-
- #百度情感评级
- #sentiment情感极性分类结果, 0:负向,1:中性,2:正向
- sentiment_baidu_result = []
- for sentiobj2 in data2["评论文本"]:
- any_obj2 = client.sentimentClassify(sentiobj2['items'][0]['sentiment'])
- sentiment_baidu_result.append(any_obj2)
- data2["百度情感评级"]=sentiment_baidu_result
- #百度正向分数
- import time
- sentiment_baidu_positive = []
- for sentiobj2 in data2["评论文本"]:
- any_obj2 = client.sentimentClassify(sentiobj2)
- sentiment_baidu_positive.append(any_obj2['items'][0]['positive_prob'])
- data2["baidu_positive"]=sentiment_baidu_positive
-
- #百度负向分数
- sentiment_baidu_negative = []
- for sentiobj2 in data2["评论文本"]:
- any_obj2 = client.sentimentClassify(sentiobj2['items'][0]['negative_prob'])
- sentiment_baidu_negative.append(any_obj2)
- data2["baidu_negative"]=sentiment_baidu_negative
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。