赞
踩
本文将详细介绍Flink-CDC如何全量及增量采集Sqlserver数据源,准备适配Sqlserver数据源的小伙伴们可以参考本文,希望本文能给你带来一定的帮助。
如果没有Sqlserver
环境,但你又想学习这块的内容,那你只能自己动手通过docker
安装一个 myself sqlserver
来用作学习,当然,如果你有现成环境,那就检查一下Sqlserver
是否开启了代理(sqlagent.enabled
)服务和CDC
功能。
看Github
上写Flink-CDC
目前支持的Sqlserver
版本为2012, 2014, 2016, 2017, 2019,但我想全部拉到最新(事实证明,2022-latest 和latest是一样的,因为imagId
都是一致的,且在后续测试也是没有问题的),所以我在docker
上拉取镜像时,直接采用如下命令:
docker pull mcr.microsoft.com/mssql/server:latest
标准启动模式,没什么好说的,主要设置一下密码(密码要求比较严格,建议直接在网上搜个随机密码生成器来搞一下)。
docker run -e 'ACCEPT_EULA=Y' -e 'SA_PASSWORD=${your_password}' \
-p 1433:1433 --name sqlserver \
-d mcr.microsoft.com/mssql/server:latest
设置代理sqlagent.enabled
,代理设置完成后,需要重启Sqlserver
,因为我们是docker
安装的,直接用docker restart sqlserver
就行了。
[root@hdp-01 ~]# docker exec -it --user root sqlserver bash
root@0274812d0c10:/# /opt/mssql/bin/mssql-conf set sqlagent.enabled true
SQL Server needs to be restarted in order to apply this setting. Please run
'systemctl restart mssql-server.service'.
root@0274812d0c10:/# exit
exit
[root@hdp-01 ~]# docker restart sqlserver
sqlserver
按照如下步骤执行命令,如果看到is_cdc_enabled = 1
,则说明当前数据库
root@0274812d0c10:/# /opt/mssql-tools/bin/sqlcmd -S localhost -U SA -P "${your_password}" 1> create databases test; 2> go 1> use test; 2> go Changed database context to 'test'. 1> EXEC sys.sp_cdc_enable_db; 2> go 1> SELECT is_cdc_enabled FROM sys.databases WHERE name = 'test'; 2> go is_cdc_enabled -------------- 1 (1 rows affected) 1> CREATE TABLE t_info (id int,order_date date,purchaser int,quantity int,product_id int,PRIMARY KEY ([id])) 2> go 1> 2> 3> EXEC sys.sp_cdc_enable_table 4> @source_schema = 'dbo', 5> @source_name = 't_info', 6> @role_name = 'cdc_role'; 7> go Update mask evaluation will be disabled in net_changes_function because the CLR configuration option is disabled. Job 'cdc.zeus_capture' started successfully. Job 'cdc.zeus_cleanup' started successfully. 1> select * from t_info; 2> go id order_date purchaser quantity product_id ----------- ---------------- ----------- ----------- ----------- (0 rows affected)
用客户端连接Sqlserver
,查看test
库下的INFORMATION_SCHEMA.TABLES
中是否出现TABLE_SCHEMA = cdc
的表,如果出现,说明已经成功安装Sqlserver
并启用了CDC
。
1> use test;
2> go
Changed database context to 'test'.
1> select * from INFORMATION_SCHEMA.TABLES;
2> go
TABLE_CATALOG TABLE_SCHEMA TABLE_NAME TABLE_TYPE
test dbo user_info BASE TABLE
test dbo systranschemas BASE TABLE
test cdc change_tables BASE TABLE
test cdc ddl_history BASE TABLE
test cdc lsn_time_mapping BASE TABLE
test cdc captured_columns BASE TABLE
test cdc index_columns BASE TABLE
test dbo orders BASE TABLE
test cdc dbo_orders_CT BASE TABLE
添加依赖包:
<dependency>
<groupId>com.ververica</groupId>
<artifactId>flink-connector-sqlserver-cdc</artifactId>
<version>3.0.0</version>
</dependency>
编写主函数:
public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 设置全局并行度 env.setParallelism(1); // 设置时间语义为ProcessingTime env.getConfig().setAutoWatermarkInterval(0); // 每隔60s启动一个检查点 env.enableCheckpointing(60000, CheckpointingMode.EXACTLY_ONCE); // checkpoint最小间隔 env.getCheckpointConfig().setMinPauseBetweenCheckpoints(1000); // checkpoint超时时间 env.getCheckpointConfig().setCheckpointTimeout(60000); // 同一时间只允许一个checkpoint // env.getCheckpointConfig().setMaxConcurrentCheckpoints(1); // Flink处理程序被cancel后,会保留Checkpoint数据 // env.getCheckpointConfig().setExternalizedCheckpointCleanup(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); SourceFunction<String> sqlServerSource = SqlServerSource.<String>builder() .hostname("localhost") .port(1433) .username("SA") .password("") .database("test") .tableList("dbo.t_info") .startupOptions(StartupOptions.initial()) .debeziumProperties(getDebeziumProperties()) .deserializer(new CustomerDeserializationSchemaSqlserver()) .build(); DataStreamSource<String> dataStreamSource = env.addSource(sqlServerSource, "_transaction_log_source"); dataStreamSource.print().setParallelism(1); env.execute("sqlserver-cdc-test"); } public static Properties getDebeziumProperties() { Properties properties = new Properties(); properties.put("converters", "sqlserverDebeziumConverter"); properties.put("sqlserverDebeziumConverter.type", "SqlserverDebeziumConverter"); properties.put("sqlserverDebeziumConverter.database.type", "sqlserver"); // 自定义格式,可选 properties.put("sqlserverDebeziumConverter.format.datetime", "yyyy-MM-dd HH:mm:ss"); properties.put("sqlserverDebeziumConverter.format.date", "yyyy-MM-dd"); properties.put("sqlserverDebeziumConverter.format.time", "HH:mm:ss"); return properties; }
Sqlserver
反序列化格式:Flink-CDC
底层技术为debezium
,它捕获到Sqlserver
数据变更(CRUD)的数据格式如下:
#初始化
Struct{after=Struct{id=1,order_date=2024-01-30,purchaser=1,quantity=100,product_id=1},source=Struct{version=1.9.7.Final,connector=sqlserver,name=sqlserver_transaction_log_source,ts_ms=1706574924473,snapshot=true,db=zeus,schema=dbo,table=orders,commit_lsn=0000002b:00002280:0003},op=r,ts_ms=1706603724432}
#新增
Struct{after=Struct{id=12,order_date=2024-01-11,purchaser=6,quantity=233,product_id=63},source=Struct{version=1.9.7.Final,connector=sqlserver,name=sqlserver_transaction_log_source,ts_ms=1706603786187,db=zeus,schema=dbo,table=orders,change_lsn=0000002b:00002480:0002,commit_lsn=0000002b:00002480:0003,event_serial_no=1},op=c,ts_ms=1706603788461}
#更新
Struct{before=Struct{id=12,order_date=2024-01-11,purchaser=6,quantity=233,product_id=63},after=Struct{id=12,order_date=2024-01-11,purchaser=8,quantity=233,product_id=63},source=Struct{version=1.9.7.Final,connector=sqlserver,name=sqlserver_transaction_log_source,ts_ms=1706603845603,db=zeus,schema=dbo,table=orders,change_lsn=0000002b:00002500:0002,commit_lsn=0000002b:00002500:0003,event_serial_no=2},op=u,ts_ms=1706603850134}
#删除
Struct{before=Struct{id=11,order_date=2024-01-11,purchaser=6,quantity=233,product_id=63},source=Struct{version=1.9.7.Final,connector=sqlserver,name=sqlserver_transaction_log_source,ts_ms=1706603973023,db=zeus,schema=dbo,table=orders,change_lsn=0000002b:000025e8:0002,commit_lsn=0000002b:000025e8:0005,event_serial_no=1},op=d,ts_ms=1706603973859}
因此,可以根据自己需要自定义反序列化格式,将数据按照标准统一数据输出,下面是我自定义的格式,供大家参考:
import com.alibaba.fastjson2.JSON; import com.alibaba.fastjson2.JSONObject; import com.alibaba.fastjson2.JSONWriter; import com.ververica.cdc.debezium.DebeziumDeserializationSchema; import io.debezium.data.Envelope; import org.apache.flink.api.common.typeinfo.BasicTypeInfo; import org.apache.flink.api.common.typeinfo.TypeInformation; import org.apache.flink.util.Collector; import org.apache.kafka.connect.data.Field; import org.apache.kafka.connect.data.Schema; import org.apache.kafka.connect.data.Struct; import org.apache.kafka.connect.source.SourceRecord; import java.util.HashMap; import java.util.Map; public class CustomerDeserializationSchemaSqlserver implements DebeziumDeserializationSchema<String> { private static final long serialVersionUID = -1L; @Override public void deserialize(SourceRecord sourceRecord, Collector collector) { Map<String, Object> resultMap = new HashMap<>(); String topic = sourceRecord.topic(); String[] split = topic.split("[.]"); String database = split[1]; String table = split[2]; resultMap.put("db", database); resultMap.put("tableName", table); //获取操作类型 Envelope.Operation operation = Envelope.operationFor(sourceRecord); //获取数据本身 Struct struct = (Struct) sourceRecord.value(); Struct after = struct.getStruct("after"); Struct before = struct.getStruct("before"); String op = operation.name(); resultMap.put("op", op); //新增,更新或者初始化 if (op.equals(Envelope.Operation.CREATE.name()) || op.equals(Envelope.Operation.READ.name()) || op.equals(Envelope.Operation.UPDATE.name())) { JSONObject afterJson = new JSONObject(); if (after != null) { Schema schema = after.schema(); for (Field field : schema.fields()) { afterJson.put(field.name(), after.get(field.name())); } resultMap.put("after", afterJson); } } if (op.equals(Envelope.Operation.DELETE.name())) { JSONObject beforeJson = new JSONObject(); if (before != null) { Schema schema = before.schema(); for (Field field : schema.fields()) { beforeJson.put(field.name(), before.get(field.name())); } resultMap.put("before", beforeJson); } } collector.collect(JSON.toJSONString(resultMap, JSONWriter.Feature.FieldBased, JSONWriter.Feature.LargeObject)); } @Override public TypeInformation<String> getProducedType() { return BasicTypeInfo.STRING_TYPE_INFO; } }
debezium
会将日期转为5位数字,日期时间转为13位的数字,因此我们需要根据Sqlserver
的日期类型转换成标准的时期或者时间格式。Sqlserver
的日期类型主要包含以下几种:
字段类型 | 快照类型(jdbc type) | cdc类型(jdbc type) |
---|---|---|
DATE | java.sql.Date(91) | java.sql.Date(91) |
TIME | java.sql.Timestamp(92) | java.sql.Time(92) |
DATETIME | java.sql.Timestamp(93) | java.sql.Timestamp(93) |
DATETIME2 | java.sql.Timestamp(93) | java.sql.Timestamp(93) |
DATETIMEOFFSET | microsoft.sql.DateTimeOffset(-155) | microsoft.sql.DateTimeOffset(-155) |
SMALLDATETIME | java.sql.Timestamp(93) | java.sql.Timestamp(93) |
import io.debezium.spi.converter.CustomConverter; import io.debezium.spi.converter.RelationalColumn; import org.apache.kafka.connect.data.SchemaBuilder; import java.time.ZoneOffset; import java.time.format.DateTimeFormatter; import java.util.Properties; @Sl4j public class SqlserverDebeziumConverter implements CustomConverter<SchemaBuilder, RelationalColumn> { private static final String DATE_FORMAT = "yyyy-MM-dd"; private static final String TIME_FORMAT = "HH:mm:ss"; private static final String DATETIME_FORMAT = "yyyy-MM-dd HH:mm:ss"; private DateTimeFormatter dateFormatter; private DateTimeFormatter timeFormatter; private DateTimeFormatter datetimeFormatter; private SchemaBuilder schemaBuilder; private String databaseType; private String schemaNamePrefix; @Override public void configure(Properties properties) { // 必填参数:database.type,只支持sqlserver this.databaseType = properties.getProperty("database.type"); // 如果未设置,或者设置的不是mysql、sqlserver,则抛出异常。 if (this.databaseType == null || !this.databaseType.equals("sqlserver"))) { throw new IllegalArgumentException("database.type 必须设置为'sqlserver'"); } // 选填参数:format.date、format.time、format.datetime。获取时间格式化的格式 String dateFormat = properties.getProperty("format.date", DATE_FORMAT); String timeFormat = properties.getProperty("format.time", TIME_FORMAT); String datetimeFormat = properties.getProperty("format.datetime", DATETIME_FORMAT); // 获取自身类的包名+数据库类型为默认schema.name String className = this.getClass().getName(); // 查看是否设置schema.name.prefix this.schemaNamePrefix = properties.getProperty("schema.name.prefix", className + "." + this.databaseType); // 初始化时间格式化器 dateFormatter = DateTimeFormatter.ofPattern(dateFormat); timeFormatter = DateTimeFormatter.ofPattern(timeFormat); datetimeFormatter = DateTimeFormatter.ofPattern(datetimeFormat); } // sqlserver的转换器 public void registerSqlserverConverter(String columnType, ConverterRegistration<SchemaBuilder> converterRegistration) { String schemaName = this.schemaNamePrefix + "." + columnType.toLowerCase(); schemaBuilder = SchemaBuilder.string().name(schemaName); switch (columnType) { case "DATE": converterRegistration.register(schemaBuilder, value -> { if (value == null) { return null; } else if (value instanceof java.sql.Date) { return dateFormatter.format(((java.sql.Date) value).toLocalDate()); } else { return this.failConvert(value, schemaName); } }); break; case "TIME": converterRegistration.register(schemaBuilder, value -> { if (value == null) { return null; } else if (value instanceof java.sql.Time) { return timeFormatter.format(((java.sql.Time) value).toLocalTime()); } else if (value instanceof java.sql.Timestamp) { return timeFormatter.format(((java.sql.Timestamp) value).toLocalDateTime().toLocalTime()); } else { return this.failConvert(value, schemaName); } }); break; case "DATETIME": case "DATETIME2": case "SMALLDATETIME": case "DATETIMEOFFSET": converterRegistration.register(schemaBuilder, value -> { if (value == null) { return null; } else if (value instanceof java.sql.Timestamp) { return datetimeFormatter.format(((java.sql.Timestamp) value).toLocalDateTime()); } else if (value instanceof microsoft.sql.DateTimeOffset) { microsoft.sql.DateTimeOffset dateTimeOffset = (microsoft.sql.DateTimeOffset) value; return datetimeFormatter.format( dateTimeOffset.getOffsetDateTime().withOffsetSameInstant(ZoneOffset.UTC).toLocalDateTime()); } else { return this.failConvert(value, schemaName); } }); break; default: schemaBuilder = null; break; } } @Override public void converterFor(RelationalColumn relationalColumn, ConverterRegistration<SchemaBuilder> converterRegistration) { // 获取字段类型 String columnType = relationalColumn.typeName().toUpperCase(); // 根据数据库类型调用不同的转换器 if (this.databaseType.equals("sqlserver")) { this.registerSqlserverConverter(columnType, converterRegistration); } else { log.warn("不支持的数据库类型: {}", this.databaseType); schemaBuilder = null; } } private String getClassName(Object value) { if (value == null) { return null; } return value.getClass().getName(); } // 类型转换失败时的日志打印 private String failConvert(Object value, String type) { String valueClass = this.getClassName(value); String valueString = valueClass == null ? null : value.toString(); return valueString; } }
目前Fink-CDC
对这种增量采集传统数据库的技术已经封装的很好了,并且官方也给了详细的操作教程,但如果想要深入的学习一项技能,个人觉得还是要从头到尾操作一遍,一方面能够快速的提升自己,另一方面发现问题时,也能从不同的角度来思考解决方案,希望本篇文章能够给大家带来一点帮助。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。