当前位置:   article > 正文

随机森林和KNN分类结果可视化(Sklearn)_knn+随机森林

knn+随机森林

代码如下:

  1. from sklearn.tree import DecisionTreeClassifier
  2. from sklearn.ensemble import RandomForestClassifier
  3. from sklearn.datasets import load_wine
  4. from sklearn.model_selection import train_test_split
  5. from sklearn.model_selection import cross_val_score
  6. from sklearn.neighbors import KNeighborsClassifier
  7. import numpy as np
  8. import matplotlib.pyplot as plt
  9. if __name__ == '__main__':
  10. wine=load_wine()
  11. Xtrain,Xtest,Ytrain,Ytest=train_test_split(wine.data,wine.target,test_size=0.3)
  12. rfc=RandomForestClassifier(n_estimators=25)
  13. rfc_s=cross_val_score(rfc,wine.data,wine.target,cv=10)
  14. knn=KNeighborsClassifier(n_neighbors=30)
  15. knn_s=cross_val_score(knn,wine.data,wine.target,cv=10)
  16. knn.fit(Xtrain,Ytrain)
  17. rfc.fit(Xtrain,Ytrain)
  18. plt.plot(range(1,11),rfc_s,label="RandomForest")
  19. plt.plot(range(1,11),knn_s,label="KNN")
  20. plt.legend()
  21. plt.show()

运行结果如下图:

​​​​​​​

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/285509
推荐阅读
  

闽ICP备14008679号