赞
踩
1.Matlab实现SVM-Adaboost时间序列预测(风电功率预测);
2.运行环境为Matlab2020b;
3.data为数据集,excel数据,单变量时间序列数据,SVM_AdaboostTS.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、MAPE、RMSE多指标评价。
SVM-AdaBoost是一种将SVM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。SVM-AdaBoost算法的基本思想是将SVM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个SVM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。
%% 预测 t_sim1 = predict(net, p_train); t_sim2 = predict(net, p_test ); %% 数据反归一化 T_sim1 = mapminmax('reverse', t_sim1, ps_output); T_sim2 = mapminmax('reverse', t_sim2, ps_output); %% 均方根误差 error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M); error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N); %% 相关指标计算 % R2 R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2; R2 = 1 - norm(T_test - T_sim2')^2 / norm(T_test - mean(T_test ))^2; disp(['训练集数据的R2为:', num2str(R1)]) disp(['测试集数据的R2为:', num2str(R2)]) % MAE mae1 = sum(abs(T_sim1' - T_train)) ./ M ; mae2 = sum(abs(T_sim2' - T_test )) ./ N ; disp(['训练集数据的MAE为:', num2str(mae1)]) disp(['测试集数据的MAE为:', num2str(mae2)]) %% 平均绝对百分比误差MAPE MAPE1 = mean(abs((T_train - T_sim1')./T_train)); MAPE2 = mean(abs((T_test - T_sim2')./T_test)); disp(['训练集数据的MAPE为:', num2str(MAPE1)]) disp(['测试集数据的MAPE为:', num2str(MAPE2)]) % MBE mbe1 = sum(abs(T_sim1' - T_train)) ./ M ; mbe2 = sum(abs(T_sim1' - T_train)) ./ N ; disp(['训练集数据的MBE为:', num2str(mbe1)]) disp(['测试集数据的MBE为:', num2str(mbe2)]) %均方误差 MSE mse1 = sum((T_sim1' - T_train).^2)./M; mse2 = sum((T_sim2' - T_test).^2)./N; disp(['训练集数据的MSE为:', num2str(mse1)]) disp(['测试集数据的MSE为:', num2str(mse2)])
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。