赞
踩
随着社会经济的发展,选择到超市购物的消费者越来越多,超市排长队付账的矛盾也越来越突出。对此,我们提出一种新型的购物车,通过识别商品录入同时放入购物车中,并利用检测系统检测是否与已知的商品信息相匹配,并把商品信息传送到显示屏上。实现人工智能识别超市商品商品
- import colorsys
- import os
- from timeit import default_timer as timer
- import time
- import numpy as np
- from keras import backend as K
- from keras.models import load_model
- from keras.layers import Input
- from PIL import Image, ImageFont, ImageDraw
- import cv2
- from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
- from yolo3.utils import letterbox_image
-
-
- class YOLO(object):
- def __init__(self):
- self.model_path = 'goods-train/yolov3.h5' # model path or trained weights path
- self.anchors_path = 'model_data/yolo_anchors.txt'
- self.classes_path = 'model_data/goods_classes.txt'
-
- self.score = 0.4
- self.iou = 0.45
- self.class_names = self._get_class()
- self.anchors = self._get_anchors()
- self.sess = K.get_session()
- self.model_image_size = (416, 416) # fixed size or (None, None), hw
- self.boxes, self.scores, self.classes = self.generate()
-
- def _get_class(self):
- classes_path = os.path.expanduser(self.classes_path)
- with open(classes_path) as f:
- class_names = f.readlines()
- class_names = [c.strip() for c in class_names]
- return class_names
-
- def _get_anchors(self):
- anchors_path = os.path.expanduser(self.anchors_path)
- with open(anchors_path) as f:
- anchors = f.readline()
- anchors = [float(x) for x in anchors.split(',')]
- return np.array(anchors).reshape(-1, 2)
-
- def generate(self):
- model_path = os.path.expanduser(self.model_path)
- assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
-
- # Load model, or construct model and load weights.
- num_anchors = len(self.anchors)
- num_classes = len(self.class_names)
- is_tiny_version = num_anchors == 6 # default setting
- try:
- self.yolo_model = load_model(model_path, compile=False)
- except:
- self.yolo_model = tiny_yolo_body(Input(shape=(None, None, 3)), num_anchors // 2, num_classes) \
- if is_tiny_version else yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes)
- self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
- else:
- assert self.yolo_model.layers[-1].output_shape[-1] == \
- num_anchors / len(self.yolo_model.output) * (num_classes + 5), \
- 'Mismatch between model and given anchor and class sizes'
-
- print('{} model, anchors, and classes loaded.'.format(model_path))
-
- # Generate colors for drawing bounding boxes.
- hsv_tuples = [(x / len(self.class_names), 1., 1.)
- for x in range(len(self.class_names))]
- self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
- self.colors = list(
- map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
- self.colors))
- np.random.seed(10101) # Fixed seed for consistent colors across runs.
- np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
- np.random.seed(None) # Reset seed to default.
-
- # Generate output tensor targets for filtered bounding boxes.
- self.input_image_shape = K.placeholder(shape=(2,))
- boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
- len(self.class_names), self.input_image_shape,
- score_threshold=self.score, iou_threshold=self.iou)
- return boxes, scores, classes
-
- def detect_image(self, image):
- if self.model_image_size != (None, None):
- assert self.model_image_size[0] % 32 == 0, 'Multiples of 32 required'
- assert self.model_image_size[1] % 32 == 0, 'Multiples of 32 required'
- boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
- else:
- new_image_size = (image.width - (image.width % 32),
- image.height - (image.height % 32))
- boxed_image = letterbox_image(image, new_image_size)
-
- image_data = np.array(boxed_image, dtype='float32')
-
- # print(" image_data.shape:",image_data.shape)
- image_data /= 255.
- image_data = np.expand_dims(image_data, 0) # Add batch dimension.
-
- out_boxes, out_scores, out_classes = self.sess.run(
- [self.boxes, self.scores, self.classes],
- feed_dict={
- self.yolo_model.input: image_data,
- self.input_image_shape: [image.size[1], image.size[0]],
- K.learning_phase(): 0
- })
- font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
- size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
- thickness = (image.size[0] + image.size[1]) // 300
-
- for i, c in reversed(list(enumerate(out_classes))):
- predicted_class = self.class_names[c]
- box = out_boxes[i]
- score = out_scores[i]
-
- label = '{} {:.2f}'.format(predicted_class, score)
- draw = ImageDraw.Draw(image)
- label_size = draw.textsize(label, font)
-
- top, left, bottom, right = box
- top = max(0, np.floor(top + 0.5).astype('int32'))
- left = max(0, np.floor(left + 0.5).astype('int32'))
- bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
- right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
- # print(label, (left, top), (right, bottom))
- center_y = (top + bottom) / 2
- center_x = (left + right) / 2
- if top - label_size[1] >= 0:
- text_origin = np.array([left, top - label_size[1]])
- else:
- text_origin = np.array([left, top + 1])
-
- # My kingdom for a good redistributable image drawing library.
- for i in range(thickness):
- draw.rectangle(
- [left + i, top + i, right - i, bottom - i],
- outline=self.colors[c])
- draw.point((center_x, center_y), fill=(255, 0, 0))
- draw.rectangle(
- [tuple(text_origin), tuple(text_origin + label_size)],
- fill=self.colors[c])
- draw.text(text_origin, label, fill=(0, 0, 0), font=font)
- del draw
- return image, len(out_classes)
-
- def close_session(self):
- self.sess.close()
-
-
- def detect_img(yolo):
- traindata_path = 'images'
- num_count = 0
- for img in os.listdir(traindata_path):
- print(img)
- try:
- image = Image.open(traindata_path + '/' + img)
- print("单幅图像", image.mode)
- except:
- print('Open Error! Try again!')
- else:
- r_image, num = yolo.detect_image(image)
- num_count = num_count + num
- result = np.asarray(r_image)
- result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
- cv2.imwrite('result/' + img, result)
- # r_image.show()
- yolo.close_session()
- print('-----------------')
- print('total images:%s' % len(os.listdir(traindata_path)))
- print('detect num:%s' % num_count)
-
- if __name__ == '__main__':
- detect_img(YOLO())

效果图:
python yolo超市商品识别
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。