赞
踩
论文阅读-Federated Unlearning With Momentum Degradation
联邦忘却与动量退化
Yian Zhao IEEE Internet of Things Journal 2023 年 10 月 2 日
CCF-C
momentum degradation-MoDe 动量退化
memory guidance-记忆引导
knowledge erasure-知识擦除
Deep-learning neural network—DNN深度神经网络
backdoor attacks -后门攻击
degradation model-退化模型
FL系统中的全局模型容易受到恶意节点的数据中毒攻击。在本文中,我们分析了将忘却学习和训练过程解耦的必要性,并提出了一种与训练无关的有效方法,可以有效地执行两种类型的忘却任务:1)客户端撤销 2)类别删除。
具体来说,我们将遗忘过程分解为两个步骤:1)知识擦除 2)记忆引导。
首先提出了一种新颖的知识擦除策略,称为动量退化MoDe,他实现了模型中隐含知识的擦除,并确保模型能够平滑地移动到重新训练模型的早期状态。为了减轻第一步造成的性能下降,记忆引导策略在不同数据点上对模型进行引导微调,可以有效恢复模型在剩余点上的可区分性。
FL带来的安全问题主要是由私有数据对全局模型的参数更新造成的。通过及时撤销恶意节点对全局模型的参数更新,可以有效降低数据泄露的可能性。联邦忘却学习可以通过撤销那些被污染的数据,为系统提供抵御数据中毒的方法,从而提供FL训练的安全性。
即使数据从服务器或数据库中删除,训练数据也已经隐式嵌入到使用该数据训练的模型的参数分布中。因此,为了让数据持有者或FL系统安全可靠的撤销目标数据,有必要擦除先前从特定数据中获取的模型的隐含知识。。
与训练无关的高效联邦忘却学习方法。所提出的方法将联邦忘却学习过程与训练完全解耦,并允许将两种类型的忘却学习任务(类别删除和客户端撤销)应用于任何设置下成功完成FL训练的任何模型架构,而无需修改训练过程以适应忘却学习算法。
主要贡献:
FedEraser、FUKD、UPGA->针对客户端撤销
FUCP->类别删除
(本文使用的主要符号)
当客户端ci发出数据撤销请求时或者服务器需要擦除一个或多个特定类别时,我们的方法利用同构且随机初始化的退化模型Mde分别在MoDe和记忆引导阶段进行退化和引导M。
MoDe概述:客户端Client N发出撤销请求,利用同构且随机初始化的退化模型(unlearning框中的蓝色菱形)分别在MoDe和记忆引导阶段对目标模型(图中橙色菱形)进行降级和引导。
MoDe阶段的基本原理是调整预训练的模型参数W,从而使其失去对目标数据点的强辨别力。理想的结果是调整后的模型参数Wadj非常接近重新训练的模型参数Wre。
使用随机分配的参数Wde初始化同构模型Mde,该参数作为Wre的初始状态。在忘却学习过程中,由于Mde是使用剩余数据点进行训练的,因此Wde逐渐向Wre收敛。因此,我们利用Wde作为更新W的方向。 W ← λW + (1 − λ )Wde
经过MoDe之后,预训练的模型M对所有数据点的可辨别性都有轻微下降。需要在下一次退化之前及时微调其参数W,确保W既不会持续向Wre的早期状态移动,导致M对剩余数据点的可辨别性下降,也不会更新得太过平滑导致数据撤销过程缓慢。
为了实现此目标,提出了一种记忆引导策略。利用初始化的退化模型Mde将目标数据点的预测推断为伪标签,以指导预训练模型M,同时用剩余数据点的真值标签更新它。
( 服务器端的MoDe算法):首先服务器随机初始化一个与预训练模型M结构相同的退化模型Mde。然后服务器将退化模型Mde发送给其余客户端进行FL训练,退化模型根据公式完成一轮聚合后,服务器对预训练模型M进行MoDe。最后,通过记忆引导对预训练模型M进行微调。
即小于一定轮次时,随机生成一个退化模型发给非目标Client,训练聚参,动量更新全局模型: W ← λW + (1 − λ )Wde
( 目标客户端MoDe算法):服务器将预训练模型M发送给所有客户端,同时将退化模型Mde发送给目标客户端ci。其他客户端对M进行FL训练,而目标客户端ci利用Mde在本地数据集上的输出结果作为伪标签来指导M的本地训练。
即把W和Wde都发给目标Client,用Wde在目标数据集上产生的伪标签训练W。所有的模型再聚合
在四个数据集上评估MoDe在客户端撤销和类别删除方面的性能。实验表明,MoDe可以有效地从预训练模型中消除目标数据点或特定类别的贡献,并且与重新训练相比,实现了显著的加速。
数据集:MNIST、Fashion-MNIST、CIFAR-10、CIFAR-100
评估指标:
实验结果:
客户端撤销:
MoDe处理的模型准确率和后门攻击成功率与重新训练的模型相似,差异小于1%,但是执行速度方面具有显著优势。
类别删除:
对10个客户进行FL训练,并应用所提出的MoDe来消除数据集中类别索引"0"的所有样本的贡献。
U-set表示目标类别的准确度,R-set表示其余类别的平均准确度。
所提出的MoDe方法在所有四个数据集上有效地执行了类别去除(U集精度为0.00%)
与SOTA的比较:
比较了两种算法:FUKD和UPGA(专门处理客户端撤销);
FUCP(专门处理类别删除)
消融实验:
MoDe由两个阶段组成,即MoDe和记忆引导。这两个阶段中使用的同构退化模型在每一轮的MoDe期间的剩余数据点上进行训练。
为了验证MoDe各部分的有效性,我们对MoDe中的三个关键变量,即MoDe、记忆指导和退化模型更新进行了消融实验。
后三行分别表示省略MoDe、记忆引导和退化模型更新时的结果。
根据实验结果得出三个结论:
提出了一种与训练无关且高效的联邦忘却学习方法,称为MoDe,该方法通过两个步骤迭代执行:知识擦除MoDe和记忆引导。MoDe能有效消除预训练模型中目标数据点的贡献,而记忆引导在MoDe之后恢复了模型的性能,因此这两个步骤是协作和互补的
支持client revocation and category removal。包括knowledge erasure 和 memory guidance两个步骤:knowledge erasure是一个逐渐趋近的过程,memory guidance是再次微调的过程。
型中目标数据点的贡献,而记忆引导在MoDe之后恢复了模型的性能,因此这两个步骤是协作和互补的
支持client revocation and category removal。包括knowledge erasure 和 memory guidance两个步骤:knowledge erasure是一个逐渐趋近的过程,memory guidance是再次微调的过程。
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。