当前位置:   article > 正文

【项目】仿牛客网社区开发 第7章 项目进阶 构建安全高效的企业服务 4 Redis高级数据类型_仿牛客 redis高级数据类型

仿牛客 redis高级数据类型

【项目】仿牛客网社区开发

在这里插入图片描述

第7章 项目进阶 构建安全高效的企业服务

4 Redis高级数据类型
  • HyperLogLog
    • 采用一种基数算法,用于完成独立总数的统计。
    • 占据空间小,无论统计多少个数据,只占12K的内存空间。
    • 不精确的统计算法,标准误差为 0.81% 。
  • Bitmap
    • 不是一种独立的数据结构,实际上就是字符串。
    • 支持按位存取数据,可以将其看成是byte数组。
    • 适合存储索大量的连续的数据的布尔值。

写一点程序体会一下咋用这两种数据类型

    // 统计20万个重复数据的独立总数.
    @Test
    public void testHyperLogLog() {
        String redisKey = "test:hll:01";

        for (int i = 1; i <= 100000; i++) {
            redisTemplate.opsForHyperLogLog().add(redisKey, i);
        }

        for (int i = 1; i <= 100000; i++) {
            int r = (int) (Math.random() * 100000 + 1);
            redisTemplate.opsForHyperLogLog().add(redisKey, r);
        }

        long size = redisTemplate.opsForHyperLogLog().size(redisKey);
        System.out.println(size);
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

运行结果

在这里插入图片描述

在这里插入图片描述

12 KB

    // 将3组数据合并, 再统计合并后的重复数据的独立总数.
    @Test
    public void testHyperLogLogUnion() {
        String redisKey2 = "test:hll:02";
        for (int i = 1; i <= 10000; i++) {
            redisTemplate.opsForHyperLogLog().add(redisKey2, i);
        }

        String redisKey3 = "test:hll:03";
        for (int i = 5001; i <= 15000; i++) {
            redisTemplate.opsForHyperLogLog().add(redisKey3, i);
        }

        String redisKey4 = "test:hll:04";
        for (int i = 10001; i <= 20000; i++) {
            redisTemplate.opsForHyperLogLog().add(redisKey4, i);
        }

        String unionKey = "test:hll:union";
        redisTemplate.opsForHyperLogLog().union(unionKey, redisKey2, redisKey3, redisKey4);

        long size = redisTemplate.opsForHyperLogLog().size(unionKey);
        System.out.println(size);
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

运行结果

在这里插入图片描述

在这里插入图片描述

    // 统计一组数据的布尔值
    @Test
    public void testBitMap() {
        String redisKey = "test:bm:01";

        // 记录
        redisTemplate.opsForValue().setBit(redisKey, 1, true);
        redisTemplate.opsForValue().setBit(redisKey, 4, true);
        redisTemplate.opsForValue().setBit(redisKey, 7, true);

        // 查询
        System.out.println(redisTemplate.opsForValue().getBit(redisKey, 0));
        System.out.println(redisTemplate.opsForValue().getBit(redisKey, 1));
        System.out.println(redisTemplate.opsForValue().getBit(redisKey, 2));

        // 统计
        Object obj = redisTemplate.execute(new RedisCallback() {
            @Override
            public Object doInRedis(RedisConnection connection) throws DataAccessException {
                return connection.bitCount(redisKey.getBytes());
            }
        });

        System.out.println(obj);
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

运行结果

在这里插入图片描述

在这里插入图片描述

    // 统计3组数据的布尔值, 并对这3组数据做OR运算.
    @Test
    public void testBitMapOperation() {
        String redisKey2 = "test:bm:02";
        redisTemplate.opsForValue().setBit(redisKey2, 0, true);
        redisTemplate.opsForValue().setBit(redisKey2, 1, true);
        redisTemplate.opsForValue().setBit(redisKey2, 2, true);

        String redisKey3 = "test:bm:03";
        redisTemplate.opsForValue().setBit(redisKey3, 2, true);
        redisTemplate.opsForValue().setBit(redisKey3, 3, true);
        redisTemplate.opsForValue().setBit(redisKey3, 4, true);

        String redisKey4 = "test:bm:04";
        redisTemplate.opsForValue().setBit(redisKey4, 4, true);
        redisTemplate.opsForValue().setBit(redisKey4, 5, true);
        redisTemplate.opsForValue().setBit(redisKey4, 6, true);

        String redisKey = "test:bm:or";
        Object obj = redisTemplate.execute(new RedisCallback() {
            @Override
            public Object doInRedis(RedisConnection connection) throws DataAccessException {
                connection.bitOp(RedisStringCommands.BitOperation.OR,
                        redisKey.getBytes(), redisKey2.getBytes(), redisKey3.getBytes(), redisKey4.getBytes());
                return connection.bitCount(redisKey.getBytes());
            }
        });

        System.out.println(obj);

        System.out.println(redisTemplate.opsForValue().getBit(redisKey, 0));
        System.out.println(redisTemplate.opsForValue().getBit(redisKey, 1));
        System.out.println(redisTemplate.opsForValue().getBit(redisKey, 2));
        System.out.println(redisTemplate.opsForValue().getBit(redisKey, 3));
        System.out.println(redisTemplate.opsForValue().getBit(redisKey, 4));
        System.out.println(redisTemplate.opsForValue().getBit(redisKey, 5));
        System.out.println(redisTemplate.opsForValue().getBit(redisKey, 6));
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

运行结果

在这里插入图片描述

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/728833
推荐阅读
相关标签
  

闽ICP备14008679号