赞
踩
AI - Artificial Intelligence,人工智能,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
ML - Machine Learning,机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
DL - 深度学习(Deep Learning)的概念大概是2006年左右由Geoffrey Hinton等人提出来的,主要通过神经网络(Neural Network, NN)来模拟人的大脑的学习过程,希望通过模仿人的大脑的多层抽象机制来实现对数据(画像、语音及文本等)的抽象表达,将features learning和classifier整合到了一个学习框架中,减少了人工/人为在设计features中的工作。“深度学习”里面的深度(Deep)指的就是神经网络多层结构
机器学习是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎;Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络。
简化一下三者的关系, AI是目标; ML是手段, 通过大数据的应用的方式;DL是模拟人的大脑。ML是对原有方式的学习, 无法超越, 但是DL可以。以下棋举例来说,ML是输入之前下过的路数,通过大数据分析进行运算, 所下的招数是之前出现过的,无法创新, 而DL是模拟人的大脑思维方式,可以创新。
overfittingt是这样一种现象:一个假设在训练数据上能够获得比其他假设更好的拟合,但是在训练数据外的数据集上却不能很好的拟合数据。此时我们就叫这个假设出现了overfitting的现象。出现这种现象的主要原因是训练数据中存在噪音或者训练数据太少。而解决overfit的方法主要有两种:提前停止树的增长或者对已经生成的树按照一定的规则进行后剪枝。
在统计学中,过适现象(英语:overfitting,或称:过度拟合)是指在调适一个统计模型时,使用过多参数。对比于可取得的资料总量来说,一个荒谬的模型模型只要足够复杂,是可以完美地适应资料。过适一般可以识为违反奥卡姆剃刀原则。当可选择的参数的自由度超过资料所包含资讯内容时,这会导致最后(调适后)模型使用任意的参数,这会减少或破坏模型一般化的能力更甚于适应资料。过适的可能性不只取决于参数个数和资料,也跟模型架构与资料的一致性有关。此外对比于资料中预期的噪声或错误数量,跟模型错误的数量也有关。
过适现象的观念对机器学习也是很重要的。通常一个学习算法是借由训练范例来训练的。亦即预期结果的范例是可知的。而学习者则被认为须达到可以预测出其它范例的正确的结果,因此,应适用于一般化的情况而非只是训练时所使用的现有资料(根据它的归纳偏向)。然而,学习者却会去适应训练资料中太特化但又随机的特征,特别是在当学习过程太久或范例太少时。在过适的过程中,当预测训练范例结果的表现增加时,应用在未知资料的表现则变更差。
有一次讲座的时候听到了这样一种解释:
如下图, 很多点, 深度学习之后汇出的应该是如图一的趋势图, 这样x 轴任给一个点, y轴能找到对应的值。
如果数据或是运算过分的话, 原有数据的每一个点都包含的话。反而没有规律了。
TensorFlow - Google
Torch - Facebook
Caffe - Convolution Architecture For Feature Extraction-
MXNet - Amazon
CNTK - Computational Network Toolkit - Microsoft
SystemML - IBM
GPU: Graphics Processing Unit,中文为图形处理器
GPU最初是用在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上运行绘图运算工作的微处理器。因为对于处理图像数据来说,图像上的每一个像素点都有被处理的需要,这是一个相当大的数据,所以对于运算加速的需求图像处理领域最为强烈,GPU也就应运而生。
TPU: Tensor Processing Unit(张量处理单元)的处理器。在Google I/O 2016的主题演讲进入尾声时,Google的CEO皮采提到了机器学习的专属芯片。
AI - Artificial Intelligence,人工智能,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
ML - Machine Learning,机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
DL - 深度学习(Deep Learning)的概念大概是2006年左右由Geoffrey Hinton等人提出来的,主要通过神经网络(Neural Network, NN)来模拟人的大脑的学习过程,希望通过模仿人的大脑的多层抽象机制来实现对数据(画像、语音及文本等)的抽象表达,将features learning和classifier整合到了一个学习框架中,减少了人工/人为在设计features中的工作。“深度学习”里面的深度(Deep)指的就是神经网络多层结构
机器学习是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎;Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络。
简化一下三者的关系, AI是目标; ML是手段, 通过大数据的应用的方式;DL是模拟人的大脑。ML是对原有方式的学习, 无法超越, 但是DL可以。以下棋举例来说,ML是输入之前下过的路数,通过大数据分析进行运算, 所下的招数是之前出现过的,无法创新, 而DL是模拟人的大脑思维方式,可以创新。
overfittingt是这样一种现象:一个假设在训练数据上能够获得比其他假设更好的拟合,但是在训练数据外的数据集上却不能很好的拟合数据。此时我们就叫这个假设出现了overfitting的现象。出现这种现象的主要原因是训练数据中存在噪音或者训练数据太少。而解决overfit的方法主要有两种:提前停止树的增长或者对已经生成的树按照一定的规则进行后剪枝。
在统计学中,过适现象(英语:overfitting,或称:过度拟合)是指在调适一个统计模型时,使用过多参数。对比于可取得的资料总量来说,一个荒谬的模型模型只要足够复杂,是可以完美地适应资料。过适一般可以识为违反奥卡姆剃刀原则。当可选择的参数的自由度超过资料所包含资讯内容时,这会导致最后(调适后)模型使用任意的参数,这会减少或破坏模型一般化的能力更甚于适应资料。过适的可能性不只取决于参数个数和资料,也跟模型架构与资料的一致性有关。此外对比于资料中预期的噪声或错误数量,跟模型错误的数量也有关。
过适现象的观念对机器学习也是很重要的。通常一个学习算法是借由训练范例来训练的。亦即预期结果的范例是可知的。而学习者则被认为须达到可以预测出其它范例的正确的结果,因此,应适用于一般化的情况而非只是训练时所使用的现有资料(根据它的归纳偏向)。然而,学习者却会去适应训练资料中太特化但又随机的特征,特别是在当学习过程太久或范例太少时。在过适的过程中,当预测训练范例结果的表现增加时,应用在未知资料的表现则变更差。
有一次讲座的时候听到了这样一种解释:
如下图, 很多点, 深度学习之后汇出的应该是如图一的趋势图, 这样x 轴任给一个点, y轴能找到对应的值。
如果数据或是运算过分的话, 原有数据的每一个点都包含的话。反而没有规律了。
TensorFlow - Google
Torch - Facebook
Caffe - Convolution Architecture For Feature Extraction-
MXNet - Amazon
CNTK - Computational Network Toolkit - Microsoft
SystemML - IBM
GPU: Graphics Processing Unit,中文为图形处理器
GPU最初是用在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上运行绘图运算工作的微处理器。因为对于处理图像数据来说,图像上的每一个像素点都有被处理的需要,这是一个相当大的数据,所以对于运算加速的需求图像处理领域最为强烈,GPU也就应运而生。
TPU: Tensor Processing Unit(张量处理单元)的处理器。在Google I/O 2016的主题演讲进入尾声时,Google的CEO皮采提到了机器学习的专属芯片。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。