当前位置:   article > 正文

[AI Mem0] 大语言模型:一站式集成多种顶级AI模型,提升工作效率_mem0 ai

mem0 ai

概览

Mem0 内置了对多种流行的大型语言模型的支持。它可以利用用户提供的大型语言模型,确保针对特定需求的高效使用。

  • OpenAI
  • Groq
  • Together
  • AWS Bedrock
  • Litellm
  • Google AI
  • Anthropic
  • Mistral AI
  • OpenAI Azure

OpenAI

import os
from mem0 import Memory

os.environ["OPENAI_API_KEY"] = "your-api-key"

config = {
    "llm": {
        "provider": "openai",
        "config": {
            "model": "gpt-4o",
            "temperature": 0.2,
            "max_tokens": 1500,
        }
    }
}

m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

Groq

import os
from mem0 import Memory

os.environ["GROQ_API_KEY"] = "your-api-key"

config = {
    "llm": {
        "provider": "groq",
        "config": {
            "model": "mixtral-8x7b-32768",
            "temperature": 0.1,
            "max_tokens": 1000,
        }
    }
}

m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

Together

import os
from mem0 import Memory

os.environ["TOGETHER_API_KEY"] = "your-api-key"

config = {
    "llm": {
        "provider": "togetherai",
        "config": {
            "model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
            "temperature": 0.2,
            "max_tokens": 1500,
        }
    }
}

m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

AWS Bedrock

import os
from mem0 import Memory

os.environ['AWS_REGION'] = 'us-east-1'
os.environ["AWS_ACCESS_KEY"] = "xx"
os.environ["AWS_SECRET_ACCESS_KEY"] = "xx"

config = {
    "llm": {
        "provider": "aws_bedrock",
        "config": {
            "model": "arn:aws:bedrock:us-east-1:123456789012:model/your-model-name",
            "temperature": 0.2,
            "max_tokens": 1500,
        }
    }
}

m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Litellm

import os
from mem0 import Memory

os.environ["OPENAI_API_KEY"] = "your-api-key"

config = {
    "llm": {
        "provider": "litellm",
        "config": {
            "model": "gpt-3.5-turbo",
            "temperature": 0.2,
            "max_tokens": 1500,
        }
    }
}

m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

Google AI

import os
from mem0 import Memory

os.environ["GEMINI_API_KEY"] = "your-api-key"

config = {
    "llm": {
        "provider": "litellm",
        "config": {
            "model": "gemini/gemini-pro",
            "temperature": 0.2,
            "max_tokens": 1500,
        }
    }
}

m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

Anthropic

import os
from mem0 import Memory

os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

config = {
    "llm": {
        "provider": "litellm",
        "config": {
            "model": "claude-3-opus-20240229",
            "temperature": 0.1,
            "max_tokens": 2000,
        }
    }
}

m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

Mistral AI

import os
from mem0 import Memory

os.environ["MISTRAL_API_KEY"] = "your-api-key"

config = {
    "llm": {
        "provider": "litellm",
        "config": {
            "model": "open-mixtral-8x7b",
            "temperature": 0.1,
            "max_tokens": 2000,
        }
    }
}

m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

OpenAI Azure

import os
from mem0 import Memory

os.environ["AZURE_API_KEY"] = "your-api-key"

# Needed to use custom models
os.environ["AZURE_API_BASE"] = "your-api-base-url"
os.environ["AZURE_API_VERSION"] = "version-to-use"

config = {
    "llm": {
        "provider": "litellm",
        "config": {
            "model": "azure_ai/command-r-plus",
            "temperature": 0.1,
            "max_tokens": 2000,
        }
    }
}

m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/996749
推荐阅读
相关标签
  

闽ICP备14008679号