赞
踩
广告位:
图像拼接论文精读专栏 —— 图像拼接领域论文全覆盖(包含数据集),省时省力读论文,带你理解晦涩难懂的论文算法,学习零散的知识和数学原理,并学会写图像拼接领域的论文(介绍、相关工作、算法、实验、结论、并附有参考文献,不用一篇一篇文章再找)
图像拼接论文源码精读专栏 —— 图像拼接有源码的论文全覆盖(有的自己复现),帮助你通过源码进一步理解论文算法,助你做实验,跑出拼接结果,得到评价指标RMSE、SSIM、PSNR等,并寻找潜在创新点和改进提升思路。
超分辨率重建专栏 —— 从SRCNN开始,带你读论文,写代码,复现结果,找创新点,完成论文。手把手教,保姆级攻略。帮助你顺利毕业,熟练掌握超分技术。
有需要的同学可以点上面链接看看。
在计算机视觉任务中,如图像分类,图像数据集必不可少。自己采集的图片往往存在很多噪声或无用信息会影响模型训练。因此,需要对图片进行裁剪处理,以防止图片边缘无用信息对模型造成影响。本文介绍几种图片裁剪的方式,供大家参考。
selectROI:选择感兴趣区域,边界框框选x,y,w,h
selectROI(windowName, img, showCrosshair=None, fromCenter=None):
. 参数windowName:选择的区域被显示在的窗口的名字
. 参数img:要在什么图片上选择ROI
. 参数showCrosshair:是否在矩形框里画十字线.
. 参数fromCenter:是否是从矩形框的中心开始画
要截取的原图如下:
截取效果如下:
截取之后按回车Enter保存:
完整代码如下:
import cv2
img = 'D:/anaconda3/JupyterNotebookFile/images/dogs_and_cats.jpg'
img = cv2.imread(img)
cv2.imshow('original', img)
# 选择ROI
roi = cv2.selectROI(windowName="original", img=img, showCrosshair=True, fromCenter=False)
x, y, w, h = roi
print(roi)
# 显示ROI并保存图片
if roi != (0, 0, 0, 0):
crop = img[y:y+h, x:x+w]
cv2.imshow('crop', crop)
cv2.imwrite('D:/anaconda3/JupyterNotebookFile/images/dogs_and_cats_crop.jpg', crop)
print('Saved!')
# 退出
cv2.waitKey(0)
cv2.destroyAllWindows()
读者根据自己的图片目录修改目标图片目录和要写入的目录。
这是一张432×432大小的图片,左上角坐标为(0,0).
import cv2
im = cv2.imread('图片路径')
在用cv2.imread()默认读取三通道RGB图像后,会返回一个三维数组。同时,可用im[h,w]的形式来截取图片中的某个部分。比如中间柴犬的位置相对左上角坐标原点为,从上到下为190-380,从左往右为180-260。这样就可以通过坐标的相对位置来裁剪/截取目标图像了。
完整代码如下:
import cv2
import os
file_path = 'D:/anaconda3/JupyterNotebookFile/images/dogs_and_cats.jpg'
out_file_name = 'dogs_and_cats_cropp'
im = cv2.imread(file_path)
im = im[190:380,180:260]
save_path = r'D:/anaconda3/JupyterNotebookFile/images'
save_path_file = os.path.join(save_path,out_file_name+'.jpg')
cv2.imwrite(save_path_file,im)
截取后的图片效果:
若很多个图片数据具有相似的位置,则可以通过遍历文件的方式批量裁剪/截取,代码如下:
import cv2
import os
def clip_image(filelist,i,im_path):
'''
filelist:文件夹路径
i:批量保存的图片文件名,用数字表示
im_path:图片路径
'''
for file in filelist:
file_path=os.path.join(im_path,file)
im=cv2.imread(file_path)
#[h,w]根据自己图片中目标的位置修改
im=im[190:380,180:260]
save_path = r'D:/anaconda3/JupyterNotebookFile/images'
save_path_file = os.path.join(save_path,out_file_name+'.jpg')
cv2.imwrite(save_path_file,im)
i=i+1
传参并测试:笔者用的jupyter notebook,其他编译器写在main()中
i=0
im_path = r'D:/anaconda3/JupyterNotebookFile/images/dogs_and_cats.jpg'
filelist = os.listdir(im_path)
clip_image(filelist,i,im_path)
详见文章:三分钟学会用Python+OpenCV批量裁剪xml标注文件
详见另一篇文章。
同一类图片数据具有相似的特征,标注少量的图片训练YOLO提升其定位目标的能力,可以将所有的测试数据根据YOLO检测结果裁剪,并将结果保存用于其他分类任务中。
代码如下:
from PIL import Image
from yolo import YOLO
import os
import cv2
import numpy as np
yolo = YOLO()
'''
yolo抠图,截取目标
'''
j=0
#预测图片所在路径
path = 'E:/crop_all'
imgdir = os.listdir(path)
for dir in imgdir:
img_path = os.path.join(path,dir)
image = Image.open(img_path)
#print(image)
crop_image = cv2.imread(img_path)
#print(crop_image[0])
boxes = yolo.detect_image(image)
#print(boxes)
top = boxes[0][0]
left = boxes[0][1]
bottom = boxes[0][2]
right = boxes[0][3]
top = top - 5
left = left - 5
bottom = bottom + 5
right = right + 5
# 左上角点的坐标
top = int(max(0, np.floor(top + 0.5).astype('int32')))
left = int(max(0, np.floor(left + 0.5).astype('int32')))
# 右下角点的坐标
bottom = int(min(np.shape(image)[0], np.floor(bottom + 0.5).astype('int32')))
right = int(min(np.shape(image)[1], np.floor(right + 0.5).astype('int32')))
croped_region = crop_image[top:bottom, left:right]
#裁剪图片存放目录
baocun = r'E:/crop_all_finish'
save_path = os.path.join(baocun, str(j) + '.bmp')
cv2.imwrite(save_path, croped_region)
j = j + 1
截取效果如下:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。