当前位置:   article > 正文

【数据分析】Numpy详解_np.int

np.int

@T

Numpy是什么?

NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。

Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的。 也开发了另一个包 Numarray ,它拥有一些额外的功能。 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包。 这个开源项目有很多贡献者。

一、np.array数组

1. NumPy - Ndarray 对象

NumPy最重要的一个特点就是其N维数组对象(即ndarray),该对象是一个快速而灵活的大数据集容器。你可以利用这种数组对整块数据执行一些数学运算,其语法跟标量元素之间的运算一样。

要明白Python是如何利用与标量值类似的语法进行批次计算,我先引入NumPy,然后生成一个包含随机数据的小数组:

 
In [12]: import numpy as np

# Generate some random data
In [13]: data = np.random.randn(2, 3)

In [14]: data
Out[14]: 
array([[-0.2047,  0.4789, -0.5194],
       [-0.5557,  1.9658,  1.3934]])

 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

1.1 例子1——构造array

创建数组最简单的办法就是使用array函数。它接受一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的NumPy数组。以一个列表的转换为例:


 
In [19]: data1 = [6, 7.5, 8, 0, 1]

In [20]: arr1 = np.array(data1)

In [21]: arr1
Out[21]: array([ 6. ,  7.5,  8. ,  0. ,  1. ])



  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

嵌套序列(比如由一组等长列表组成的列表)将会被转换为一个多维数组:

In [22]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]

In [23]: arr2 = np.array(data2)

In [24]: arr2
Out[24]: 
array([[1, 2, 3, 4],
       [5, 6, 7, 8]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

1.2 例子2——维度

 
# 多于一个维度  
import numpy as np 
a = np.array([[1,  2],  [3,  4]])  
print(a)

output:
[[1, 2] 
 [3, 4]]
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

1.3 例子3——数据类型dtype

 
# 多于一个维度  
 
# dtype 参数  
import numpy as np 
a = np.array([1,  2,  3], dtype = complex)  
print(a)

output:
[ 1.+0.j,  2.+0.j,  3.+0.j]
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

1.4 一些array的数学运算

In [15]: data * 10
Out[15]: 
array([[ -2.0471,   4.7894,  -5.1944],
       [ -5.5573,  19.6578,  13.9341]])

In [16]: data + data
Out[16]: 
array([[-0.4094,  0.9579, -1.0389],
       [-1.1115,  3.9316,  2.7868]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

1.5 zeros and ones

除np.array之外,还有一些函数也可以新建数组。比如,zeros和ones分别可以创建指定长度或形状的全0或全1数组。empty可以创建一个没有任何具体值的数组。要用这些方法创建多维数组,只需传入一个表示形状的元组即可:

In [29]: np.zeros(10)
Out[29]: array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])

In [30]: np.zeros((3, 6))
Out[30]: 
array([[ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

In [31]: np.empty((2, 3, 2))
Out[31]: 
array([[[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]],
       [[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

1.6 np.arange

In [32]: np.arange(15)
Out[32]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

  • 1
  • 2
  • 3

1.7 np.基本方法

在这里插入图片描述

2. NumPy - 数据类型

dtype(数据类型)是一个特殊的对象,它含有ndarray将一块内存解释为特定数据类型所需的信息:

例子

 
# 使用数组标量类型  
import numpy as np 
dt = np.dtype(np.int32)  
print dt

output:
int32
 
 
#int8,int16,int32,int64 可替换为等价的字符串 'i1','i2','i4',以及其他。  
import numpy as np 
 
dt = np.dtype('i4')  
print dt 

output:
int32

 
# 使用端记号  
import numpy as np 
dt = np.dtype('>i4')  
print dt
 
 output:
 >i4
 
  
# 首先创建结构化数据类型。  
import numpy as np 
dt = np.dtype([('age',np.int8)])  
print dt 

output:
[('age', 'i1')] 

 
# 现在将其应用于 ndarray 对象  
import numpy as np 
 
dt = np.dtype([('age',np.int8)]) 
a = np.array([(10,),(20,),(30,)], dtype = dt)  
print a
 
 output:
 [(10,) (20,) (30,)]
 
  
# 文件名称可用于访问 age 列的内容  
import numpy as np 
 
dt = np.dtype([('age',np.int8)]) 
a = np.array([(10,),(20,),(30,)], dtype = dt)  
print a['age']

output:
[10 20 30]

 --------------------------------
import numpy as np 
student = np.dtype([('name','S20'),  ('age',  'i1'),  ('marks',  'f4')])  
print student

output:
[('name', 'S20'), ('age', 'i1'), ('marks', '<f4')])
 
 --------------------------
  
import numpy as np 
 
student = np.dtype([('name','S20'),  ('age',  'i1'),  ('marks',  'f4')]) 
a = np.array([('abc',  21,  50),('xyz',  18,  75)], dtype = student)  
print a

output:
[('abc', 21, 50.0), ('xyz', 18, 75.0)]
----------------------
In [37]: arr = np.array([1, 2, 3, 4, 5])

In [38]: arr.dtype
Out[38]: dtype('int64')

In [39]: float_arr = arr.astype(np.float64)

In [40]: float_arr.dtype
Out[40]: dtype('float64')

 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89

3. NumPy - 数组运算

数组很重要,因为它使你不用编写循环即可对数据执行批量运算。NumPy用户称其为矢量化(vectorization)。大小相等的数组之间的任何算术运算都会将运算应用到元素级:

In [51]: arr = np.array([[1., 2., 3.], [4., 5., 6.]])

In [52]: arr
Out[52]: 
array([[ 1.,  2.,  3.],
       [ 4.,  5.,  6.]])

In [53]: arr * arr
Out[53]: 
array([[  1.,   4.,   9.],
       [ 16.,  25.,  36.]])

In [54]: arr - arr
Out[54]: 
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.]])
       
In [55]: 1 / arr
Out[55]: 
array([[ 1.    ,  0.5   ,  0.3333],
       [ 0.25  ,  0.2   ,  0.1667]])

In [56]: arr ** 0.5
Out[56]: 
array([[ 1.    ,  1.4142,  1.7321],
       [ 2.    ,  2.2361,  2.4495]])

--------
In [57]: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])

In [58]: arr2
Out[58]: 
array([[  0.,   4.,   1.],
       [  7.,   2.,  12.]])

In [59]: arr2 > arr
Out[59]:
array([[False,  True, False],
       [ True, False,  True]], dtype=bool)
-------


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

4. 基本的索引和切片

NumPy数组的索引是一个内容丰富的主题,因为选取数据子集或单个元素的方式有很多。一维数组很简单。从表面上看,它们跟Python列表的功能差不多:

In [60]: arr = np.arange(10)

In [61]: arr
Out[61]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [62]: arr[5]
Out[62]: 5

In [63]: arr[5:8]
Out[63]: array([5, 6, 7])

In [64]: arr[5:8] = 12

In [65]: arr
Out[65]: array([ 0,  1,  2,  3,  4, 12, 12, 12,  8,  9])
-----------------------
In [66]: arr_slice = arr[5:8]

In [67]: arr_slice
Out[67]: array([12, 12, 12])
# 现在,当修改arr_slice中的值
#变动也会体现在原始数组arr中:

In [68]: arr_slice[1] = 12345

In [69]: arr
Out[69]: array([    0,     1,     2,     3,     4,    12, 12345,    12,     8,   
  9])
# 	切片[:]会给所有值赋值
In [70]: arr_slice[:] = 64

In [71]: arr
Out[71]: array([ 0,  1,  2,  3,  4, 64, 64, 64,  8,  9])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

可以对各个元素进行递归访问,但这样需要做的事情有点多。你可以传入一个以逗号隔开的索引列表来选取单个元素。也就是说,下面两种方式是等价的:

In [74]: arr2d[0][2]
Out[74]: 3

In [75]: arr2d[0, 2]
Out[75]: 3

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述
在多维数组中,如果省略了后面的索引,则返回对象会是一个维度低一点的ndarray(它含有高一级维度上的所有数据)。因此,在2×2×3数组arr3d中:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [77]: arr3d
Out[77]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

标量值和数组都可以被赋值给arr3d[0]:

In [79]: old_values = arr3d[0].copy()

In [80]: arr3d[0] = 42

In [81]: arr3d
Out[81]: 
array([[[42, 42, 42],
        [42, 42, 42]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

In [82]: arr3d[0] = old_values

In [83]: arr3d
Out[83]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

相似的,arr3d[1,0]可以访问索引以(1,0)开头的那些值(以一维数组的形式返回)

In [84]: arr3d[1, 0]
Out[84]: array([7, 8, 9])

  • 1
  • 2
  • 3

5. 切片索引

ndarray的切片语法跟Python列表这样的一维对象差不多:

In [88]: arr
Out[88]: array([ 0,  1,  2,  3,  4, 64, 64, 64,  8,  9])

In [89]: arr[1:6]
Out[89]: array([ 1,  2,  3,  4, 64])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

对于之前的二维数组arr2d,其切片方式稍显不同,可以看出,它是沿着第0轴(即第一个轴)切片的。也就是说,切片是沿着一个轴向选取元素的。表达式arr2d[:2]可以被认为是“选取arr2d的前两行”。:

In [90]: arr2d
Out[90]: 
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

In [91]: arr2d[:2]
Out[91]: 
array([[1, 2, 3],
       [4, 5, 6]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

你可以一次传入多个切片,就像传入多个索引那样:

In [92]: arr2d[:2, 1:]
Out[92]: 
array([[2, 3],
       [5, 6]])

  • 1
  • 2
  • 3
  • 4
  • 5

像这样进行切片时,只能得到相同维数的数组视图。通过将整数索引和切片混合,可以得到低维度的切片。

In [93]: arr2d[1, :2]
Out[93]: array([4, 5])

In [94]: arr2d[:2, 2]
Out[94]: array([3, 6])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

6. 布尔型索引

来看这样一个例子,假设我们有一个用于存储数据的数组以及一个存储姓名的数组(含有重复项)。在这里,我将使用numpy.random中的randn函数生成一些正态分布的随机数据:

In [98]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])

In [99]: data = np.random.randn(7, 4)

In [100]: names
Out[100]: 
array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'],
      dtype='<U4')

In [101]: data
Out[101]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.0072, -1.2962,  0.275 ,  0.2289],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 1.669 , -0.4386, -0.5397,  0.477 ],
       [ 3.2489, -1.0212, -0.5771,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [-0.7135, -0.8312, -2.3702, -1.8608]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

假设每个名字都对应data数组中的一行,而我们想要选出对应于名字"Bob"的所有行。跟算术运算一样,数组的比较运算(如==)也是矢量化的。因此,对names和字符串"Bob"的比较运算将会产生一个布尔型数组:

In [102]: names == 'Bob'
Out[102]: array([ True, False, False,  True, False, False, False], dtype=bool)
------------
In [104]: data[names == 'Bob', 2:]
Out[104]: 
array([[ 0.769 ,  1.2464],
       [-0.5397,  0.477 ]])

In [105]: data[names == 'Bob', 3]
Out[105]: array([ 1.2464,  0.477 ])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

通过布尔型数组设置值是一种经常用到的手段。为了将data中的所有负值都设置为0,我们只需:

In [113]: data[data < 0] = 0

In [114]: data
Out[114]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.0072,  0.    ,  0.275 ,  0.2289],
       [ 1.3529,  0.8864,  0.    ,  0.    ],
       [ 1.669 ,  0.    ,  0.    ,  0.477 ],
       [ 3.2489,  0.    ,  0.    ,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [ 0.    ,  0.    ,  0.    ,  0.    ]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

通过一维布尔数组设置整行或列的值也很简单:

In [115]: data[names != 'Joe'] = 7

In [116]: data
Out[116]: 
array([[ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 1.0072,  0.    ,  0.275 ,  0.2289],
       [ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [ 0.    ,  0.    ,  0.    ,  0.    ]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

7. 花式索引

In [117]: arr = np.empty((8, 4))

In [118]: for i in range(8):
   .....:     arr[i] = i

In [119]: arr
Out[119]: 
array([[ 0.,  0.,  0.,  0.],
       [ 1.,  1.,  1.,  1.],
       [ 2.,  2.,  2.,  2.],
       [ 3.,  3.,  3.,  3.],
       [ 4.,  4.,  4.,  4.],
       [ 5.,  5.,  5.,  5.],
       [ 6.,  6.,  6.,  6.],
       [ 7.,  7.,  7.,  7.]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

一次传入多个索引数组会有一点特别。它返回的是一个一维数组,其中的元素对应各个索引元组:

In [122]: arr = np.arange(32).reshape((8, 4))

In [123]: arr
Out[123]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23],
       [24, 25, 26, 27],
       [28, 29, 30, 31]])

In [124]: arr[[1, 5, 7, 2], [0, 3, 1, 2]]
Out[124]: array([ 4, 23, 29, 10])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

8. 数组转置和轴对换

转置是重塑的一种特殊形式,它返回的是源数据的视图(不会进行任何复制操作)。数组不仅有transpose方法,还有一个特殊的T属性:

In [126]: arr = np.arange(15).reshape((3, 5))

In [127]: arr
Out[127]: 
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

In [128]: arr.T
Out[128]: 
array([[ 0,  5, 10],
       [ 1,  6, 11],
       [ 2,  7, 12],
       [ 3,  8, 13],
       [ 4,  9, 14]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

在进行矩阵计算时,经常需要用到该操作,比如利用np.dot计算矩阵内积:

In [129]: arr = np.random.randn(6, 3)

In [130]: arr
Out[130]: 
array([[-0.8608,  0.5601, -1.2659],
       [ 0.1198, -1.0635,  0.3329],
       [-2.3594, -0.1995, -1.542 ],
       [-0.9707, -1.307 ,  0.2863],
       [ 0.378 , -0.7539,  0.3313],
       [ 1.3497,  0.0699,  0.2467]])

In [131]: np.dot(arr.T, arr)
Out[131]:
array([[ 9.2291,  0.9394,  4.948 ],
       [ 0.9394,  3.7662, -1.3622],
       [ 4.948 , -1.3622,  4.3437]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

对于高维数组,transpose需要得到一个由轴编号组成的元组才能对这些轴进行转置(比较费脑子)

In [132]: arr = np.arange(16).reshape((2, 2, 4))

In [133]: arr
Out[133]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7]],
       [[ 8,  9, 10, 11],
        [12, 13, 14, 15]]])

In [134]: arr.transpose((1, 0, 2))
Out[134]: 
array([[[ 0,  1,  2,  3],
        [ 8,  9, 10, 11]],
       [[ 4,  5,  6,  7],
        [12, 13, 14, 15]]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

这里,第一个轴被换成了第二个,第二个轴被换成了第一个,最后一个轴不变。

简单的转置可以使用.T,它其实就是进行轴对换而已。ndarray还有一个swapaxes方法,它需要接受一对轴编号:

In [135]: arr
Out[135]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7]],
       [[ 8,  9, 10, 11],
        [12, 13, 14, 15]]])

In [136]: arr.swapaxes(1, 2)
Out[136]: 
array([[[ 0,  4],
        [ 1,  5],
        [ 2,  6],
        [ 3,  7]],
       [[ 8, 12],
        [ 9, 13],
        [10, 14],
        [11, 15]]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

二、通用函数

np的一些涉及数学计算的函数
在这里插入图片描述
在这里插入图片描述

三、利用数组进行数据处理

NumPy数组使你可以将许多种数据处理任务表述为简洁的数组表达式(否则需要编写循环)。用数组表达式代替循环的做法,通常被称为矢量化。一般来说,矢量化数组运算要比等价的纯Python方式快上一两个数量级(甚至更多),尤其是各种数值计算。在后面内容中(见附录A)我将介绍广播,这是一种针对矢量化计算的强大手段。

作为简单的例子,假设我们想要在一组值(网格型)上计算函数sqrt(x2+y2)。np.meshgrid函数接受两个一维数组,并产生两个二维矩阵(对应于两个数组中所有的(x,y)对):

In [155]: points = np.arange(-5, 5, 0.01) # 1000 equally spaced points

In [156]: xs, ys = np.meshgrid(points, points)
In [157]: ys
Out[157]: 
array([[-5.  , -5.  , -5.  , ..., -5.  , -5.  , -5.  ],
       [-4.99, -4.99, -4.99, ..., -4.99, -4.99, -4.99],
       [-4.98, -4.98, -4.98, ..., -4.98, -4.98, -4.98],
       ..., 
       [ 4.97,  4.97,  4.97, ...,  4.97,  4.97,  4.97],
       [ 4.98,  4.98,  4.98, ...,  4.98,  4.98,  4.98],
       [ 4.99,  4.99,  4.99, ...,  4.99,  4.99,  4.99]])

In [158]: z = np.sqrt(xs ** 2 + ys ** 2)

In [159]: z
Out[159]: 
array([[ 7.0711,  7.064 ,  7.0569, ...,  7.0499,  7.0569,  7.064 ],
       [ 7.064 ,  7.0569,  7.0499, ...,  7.0428,  7.0499,  7.0569],
       [ 7.0569,  7.0499,  7.0428, ...,  7.0357,  7.0428, 7.0499],
       ..., 
       [ 7.0499,  7.0428,  7.0357, ...,  7.0286,  7.0357,  7.0428],
       [ 7.0569,  7.0499,  7.0428, ...,  7.0357,  7.0428,  7.0499],
       [ 7.064 ,  7.0569,  7.0499, ...,  7.0428,  7.0499,  7.0569]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

将条件逻辑表述为数组运算

numpy.where函数是三元表达式x if condition else y的矢量化版本。假设我们有一个布尔数组和两个值数组:

In [165]: xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])

In [166]: yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])

In [167]: cond = np.array([True, False, True, True, False])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

假设我们想要根据cond中的值选取xarr和yarr的值:当cond中的值为True时,选取xarr的值,否则从yarr中选取。列表推导式的写法应该如下所示:

In [168]: result = [(x if c else y)
   .....:           for x, y, c in zip(xarr, yarr, cond)]

In [169]: result
Out[169]: [1.1000000000000001, 2.2000000000000002, 1.3, 1.3999999999999999, 2.5]

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

np.where 判断语句

In [172]: arr = np.random.randn(4, 4)

In [173]: arr
Out[173]: 
array([[-0.5031, -0.6223, -0.9212, -0.7262],
       [ 0.2229,  0.0513, -1.1577,  0.8167],
       [ 0.4336,  1.0107,  1.8249, -0.9975],
       [ 0.8506, -0.1316,  0.9124,  0.1882]])

In [174]: arr > 0
Out[174]: 
array([[False, False, False, False],
       [ True,  True, False,  True],
       [ True,  True,  True, False],
       [ True, False,  True,  True]], dtype=bool)

In [175]: np.where(arr > 0, 2, -2)
Out[175]: 
array([[-2, -2, -2, -2],
       [ 2,  2, -2,  2],
       [ 2,  2,  2, -2],
       [ 2, -2,  2,  2]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

数学和统计方法

1. sum、mean

In [177]: arr = np.random.randn(5, 4)

In [178]: arr
Out[178]: 
array([[ 2.1695, -0.1149,  2.0037,  0.0296],
       [ 0.7953,  0.1181, -0.7485,  0.585 ],
       [ 0.1527, -1.5657, -0.5625, -0.0327],
       [-0.929 , -0.4826, -0.0363,  1.0954],
       [ 0.9809, -0.5895,  1.5817, -0.5287]])

In [179]: arr.mean()
Out[179]: 0.19607051119998253

In [180]: np.mean(arr)
Out[180]: 0.19607051119998253

In [181]: arr.sum()
Out[181]: 3.9214102239996507

#mean和sum这类的函数可以接受一个axis选项参数
#用于计算该轴向上的统计值,最终结果是一个少一维的数组:
#
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

这里,arr.mean(1)是“计算行的平均值”,arr.sum(0)是“计算每列的和”。

其他如cumsum和cumprod之类的方法则不聚合,而是产生一个由中间结果组成的数组

In [182]: arr.mean(axis=1)
Out[182]: array([ 1.022 ,  0.1875, -0.502 , -0.0881,  0.3611])

In [183]: arr.sum(axis=0)
Out[183]: array([ 3.1693, -2.6345,  2.2381,  1.1486])


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

cumsum,累加函数(如cumsum)返回的是同样大小的数组,但是会根据每个低维的切片沿着标记轴计算部分聚类:

In [186]: arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])

In [187]: arr
Out[187]: 
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

In [188]: arr.cumsum(axis=0)
Out[188]: 
array([[ 0,  1,  2],
       [ 3,  5,  7],
       [ 9, 12, 15]])

In [189]: arr.cumprod(axis=1)
Out[189]: 
array([[  0,   0,   0],
       [  3,  12,  60],
       [  6,  42, 336]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

2. np的一些基本统计方法

  • sum() 求和
  • mean() 平均值
  • std、var 标准差、方差
  • min、max
  • argmin、argmax 最大索引和最小索引
  • cumsum () 累计和
  • cumprod ()累计积

3. 用于boolean型数组的统计方法

  • any() 。用于测试数组中是否存在一个或多个True
  • 而all则检查数组中所有值是否都是True:
In [192]: bools = np.array([False, False, True, False])

In [193]: bools.any()
Out[193]: True

In [194]: bools.all()
Out[194]: False

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

四、 用于数组的文件输入输出

np.save和np.load是读写磁盘数组数据的两个主要函数

In [213]: arr = np.arange(10)

In [214]: np.save('some_array', arr)

In [215]: np.load('some_array.npy')
Out[215]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/正经夜光杯/article/detail/1004510
推荐阅读
相关标签
  

闽ICP备14008679号