当前位置:   article > 正文

ChatGLM 集成进LangChain工具_chatglm封装服务

chatglm封装服务

最新一段时间一直在学习LangChain相关的文档,发现LangChain提供了非常丰富的生态,并且也可以让业务非常方便的封装自己的工具,接入到LangcChain的生态中,比如切换不同向量存储(Vectorstores)、文件分片(Text Splitters)和文件加载器(Document Loaders)等。 本文将简单介绍下如何将自己搭建的ChatGLM集成进LangChain工具链中,当然如果有其他的自己搭建的LLM模型也可以采用类似的方式集成。

接入自己的LLM

参考官方文档# How to write a custom LLM wrapper,只需要集成LLM方法,并且实现_call方法即可。一个简单的自定义LLM如下:

python复制代码from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any

class CustomLLM(LLM):
  n:int
  
  @property
  def _llm_type(self) -> str:
    return "custom"

  def _call(self,prompt:str,stop:Optional[List[str]]=None) -> str:
    if stop is not None:
      raise ValueError("stop kwargs are not permitted")
    return prompt[:self.n]
  
  @property
  def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {"n": self.n}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

上面虽然只是一个最简单的实现,但是进一步思考,如果有自己的LLM,是不是也可以通过类似的方式接入到LangChain的生态中呢?

正好最近也在搭建ChatGLM,于是在想是不是可以将ChatGLM加入到LangChain工具链中来,利用其提供的工具方便做更深入的研究。于是搜索了一番,果然有类似开源实现,比如thomas-yanxin LangChain-ChatGLM-Webui,一种利用 ChatGLM-6B实现的基于本地知识的 ChatGLM 应用。但是研究了一下代码,发现其是将ChatGLM-6B和LangChain部署在一起的。但是由于资源有限,目前只有少量的显卡,不能每个人都能部署一套ChatGLM。

进一步思考,是否ChatGLM也提供了类似于openai的api接口呢,只需要进行http调用就可以使用ChatGLM的能力?这样就可以将:ChatGLM和上层的应用解耦,每个人都可以在自己本地通过api调用来进行实验。

搭建ChatGLM的api

查阅ChatGLM-6B文档,也发现了其确实可以通过API方式提供服务。 具体如下:

  • 首先需要安装额外的依赖 pip install fastapi uvicorn ,然后运行仓库中的 api.pypython api.py
  • 默认部署在本地的 8000 端口,通过 POST 方法进行调用
rust复制代码curl -X POST "http://{your_host}:8000" \
     -H 'Content-Type: application/json' \
     -d '{"prompt": "你好", "history": []}'
  • 1
  • 2
  • 3
  • 得到的返回值为
lua复制代码{
  "response":"你好
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/正经夜光杯/article/detail/901307
推荐阅读
相关标签