当前位置:   article > 正文

树和二叉树(不用看课程)

树和二叉树(不用看课程)

1. 树

1.1 树的概念与结构

树是⼀种非线性的数据结构,它是由 n(n>=0) 个有限结点组成⼀个具有层次关系的集合。把它叫做树是因为它看起来像⼀棵倒挂的树,也就是说它是根朝上,而叶朝下的。

• 有⼀个特殊的结点,称为根结点,根结点没有前驱结点。

• 除根结点外,其余结点被分成 M(M>0) 个互不相交的集合 T1、T2、……、Tm ,其中每⼀个集合 Ti(1 <= i <= m) 又是⼀棵结构与树类似的子树。每棵子树的根结点有且只有⼀个前驱,可以有 0 个或多个后继。因此,树是递归定义的。

 树形结构中,子树之间不能有交集,否则就不是树形结构。

非树形结构:

•  子树是不相交的(如果存在相交就是图了)(除了根节点之外,有其它的集合,这些集合就是树)
除了根结点外,每个结点有且仅有一个父结点
⼀棵N个结点的树有N-1条边

1.2树相关术语

 

父结点/双亲结点:若⼀个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点。
子结点/孩子结点:⼀个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点。
结点的度:⼀个结点有几个孩子,他的度就是多少;比如A的度为6,F的度为2,K的度为0。
树的度:⼀棵树中,最大的结点的度称为树的度; 如上图:树的度为 6。
叶子结点/终端结点:度为 0 的结点称为叶结点; 如上图: B C H I... 等结点为叶结点。
分支结点/非终端结点:度不为 0 的结点; 如上图: D E F G... 等结点为分支结点。
兄弟结点:具有相同父结点的结点互称为兄弟结点(亲兄弟); 如上图: B C 、D、E、F等 是兄弟结点。(H、I是表兄弟节点)。
结点的层次:从根开始定义起,根为第 1 层,根的子结点为第 2 层,以此类推。
树的高度或深度:树中结点的最大层次; 如上图:树的高度为 4。
结点的祖先:从根到该结点所经分支上的所有结点;如上图: A 是所有结点的祖先。比如P的祖先节点是(A、E、J)。
路径:⼀条从树中任意节点出发,沿父节点——子节点连接,达到任意节点的序列;比如A到Q的路径为: A-E-J-Q;H到Q的路径H-D-A-E-J-Q。
子孙:以某结点为根的子树中任⼀结点都称为该结点的子孙。如上图:所有结点都是A的子孙。
森林: m (  m>0  )棵互不相交的树的集合称为森林。一棵树也可以称为森林。

1.3 树的表示

孩子兄弟表示法:
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

1.4 树形结构实际运用场景

文件系统是计算机存储和管理文件的⼀种方式,它利用树形结构来组织和管理文件和文件夹。在文件 系统中,树结构被广泛应用,它通过父结点和子结点之间的关系来表示不同层级的文件和文件夹之间的关联。

2. 二叉树

2.1 概念与结构

在树形结构中,我们最常用的就是⼆叉树,⼀棵⼆叉树是结点的⼀个有限集合,该集合由⼀个根结点加上两棵别称为左子树和右子树的⼆叉树组成或者为空。二叉树是树形结构的一种,也可以说是对树的结构加以限制形成二叉树。
 
从上图可以看出二叉树具备以下特点:
1. ⼆叉树不存在度大于 2 的结点。(二叉树只存在度为0、1、2的节点)
2. ⼆叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树。(这里的有序是指左右孩子是有区分的)
注意:对于任意的二叉树都是由以下几种情况复合而成的。

 

第一个是空树(度为0),第二个叫只有根节点的二叉树,第三个叫做只有左子树的二叉树,第四个叫做只有右子树的二叉树,第五个叫做左右子树都存在的二叉树。

2.2 特殊的二叉树

2.2.1 满二叉树

⼀个二叉树,除了叶子节点外,如果每⼀个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为 K ,且结点总数是 2 k − 1 ,则它就是满二叉树。

2.2.2 完全⼆叉树

完全⼆叉树是效率很高的数据结构,完全二叉树是由满二叉树引出来的。对于深度为 K 的,有 n 个结点的二叉树,当且仅当其每⼀个结点都与深度为K的满二叉树中编号从 1至  n 的结点⼀⼀对应时称 之为完全二叉树。要注意的是满二叉树是⼀种特殊的完全二叉树。
假设二叉树层次为K,除了第K层外,每层结点的个数达到最大结点数,第K层结点个数不一定达到最大节点数。
这种就不是完全二叉树(完全二叉树结点的顺序是从左到右的)。
总结:
满二叉树一定是完全二叉树,但是完全二叉树不一定是满二叉树。
声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签