赞
踩
之前写过用lstm模型做的文本分类,但是代码结构非常混乱。读过Bert源码后,决定模仿Bert的结构,自己重新写一遍使用lstm模型的代码。只作为熟悉tensorflow各个api与一个比较清楚的NLP模型结构的练手用,不求更高的准确率。
使用包含10个商品类别,60000+数据的,已标注正负情感的商品评论数据作为训练语料。原文件为csv格式,包含3个字段:cat(类别)、label(正负情感)、review(实际的评论文字)。其既可作为正负情感分类的二分类训练语料,也可以(勉强)作为商品类别分类的10分类训练语料。
数据取自https://github.com/SophonPlus/ChineseNlpCorpus,非常感谢
已按大约8:2的比例得到了训练集与测试集并将其转为了tsv文件。
使用结巴分词作为切词工具。
由于我一直没有找到合适的中文词典文件,Bert中的词典文件又是以字作为最小单位的,故这里暂时只是对待训练的语料做切词、去重的处理,得到一个比较小的字典文件。
def create_vocab(): raw_df = pd.read_csv(RAW_DATA) # 读原始文件为dataframe # 热水器有一条数据有问题,不要热水器的数据 raw_df = raw_df[raw_df.cat != '热水器'] raw_document = raw_df['review'].tolist() # 原始语料(list形式) # 加载停用词列表 # with open(STOPWORDS, 'r', encoding='utf-8') as s: # stopwords = [word.strip() for word in s.readlines()] document_words = [] # 原始语料完成切词 for sentence in raw_document: cut_sentence = [word for word in jieba.lcut(sentence)] document_words.extend(cut_sentence) vocab_list = set(document_words) with open(VOCAB, 'w', encoding='utf-8') as f: f.write('[PAD]' + '\n') f.write('[UNK]' + '\n') for vocab in vocab_list: f.write(vocab + '\n')
这一块完全基于Bert源码,做了非常多的精简。只满足:to_unicode、读取词典、切词、词语转id、id转词语的基本功能。没什么好说的。
import collections import tensorflow as tf import jieba def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) # 将词典中的词构成(词,index)的collections.OrderedDict形式 def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() index = 0 with tf.gfile.GFile(vocab_file, "r") as reader: while True: token = convert_to_unicode(reader.readline()) if not token: break token = token.strip() vocab[token] = index index += 1 return vocab def convert_by_vocab(vocab, items): """Converts a sequence of [tokens|ids] using the vocab.""" output = [] for item in items: output.append(vocab.get(item, vocab['[UNK]'])) return output class FullTokenizer(object): """Runs end-to-end tokenziation.""" def __init__(self, vocab_file): # 根据vocab文件,得到形如(词,index)的字典 self.vocab = load_vocab(vocab_file) # 变成 index: 词 的形式 self.inv_vocab = {v: k for k, v in self.vocab.items()} # 将句子变成词列表 @staticmethod def tokenize(text): split_tokens = jieba.lcut(text) return split_tokens def convert_tokens_to_ids(self, tokens): return convert_by_vocab(self.vocab, tokens) def convert_ids_to_tokens(self, ids): return convert_by_vocab(self.inv_vocab, ids)
模型的mode参数可取train、eval、predict三类,取eval时只返回cost与accuracy,取predict时只返回logits。别的不用多说了。
import tensorflow as tf import json import six class LstmConfig(object): def __init__(self, vocab_size, # 词典中的词数 hidden_size=128, keep_prob=0.9, embedding_keep_prob=0.9, # 词向量不被dropout的比例 max_grad_norm=5, num_of_classes=2, # 分类数 num_of_layers=2, # lstm网络层数 initializer_range=0.02): # 初始化范围 self.vocab_size = vocab_size self.hidden_size = hidden_size self.keep_prob = keep_prob self.embedding_keep_prob = embedding_keep_prob self.max_grad_norm = max_grad_norm self.num_of_classes = num_of_classes self.num_of_layers = num_of_layers self.initializer_range = initializer_range @classmethod def from_dict(cls, json_object): """Constructs a `BertConfig` from a Python dictionary of parameters.""" config = LstmConfig(vocab_size=None) for (key, value) in six.iteritems(json_object): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): """Constructs a `BertConfig` from a json file of parameters.""" with tf.gfile.GFile(json_file, "r") as reader: text = reader.read() return cls.from_dict(json.loads(text)) # 双向LSTM网络模型 class LstmModel(object): # 构建网格结构 def __init__(self, config, mode): self.config = config self.embedding_keep_prob = config.embedding_keep_prob self.mode = mode output_keep_prob = config.keep_prob if mode == 'train' else 1.0 # 词向量 self.word_embedding = tf.get_variable('word_emb', shape=[config.vocab_size, config.hidden_size]) # lstm网络结构 # 前向网络变量 lstm_cells_fw = [tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(config.hidden_size), output_keep_prob=output_keep_prob) for _ in range(config.num_of_layers)] self.lstm_fw = tf.nn.rnn_cell.MultiRNNCell(lstm_cells_fw) # 反向网络 lstm_cells_bw = [tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(config.hidden_size), output_keep_prob=output_keep_prob) for _ in range(config.num_of_layers)] self.lstm_bw = tf.nn.rnn_cell.MultiRNNCell(lstm_cells_bw) # Softmax层变量 self.weight = tf.get_variable('weight', [config.hidden_size * 2, config.num_of_classes]) self.bias = tf.get_variable('bias', [config.num_of_classes]) # 定义模型的前向计算图 def forward(self, src_input, src_size, label): # 将输入的序号化单词转成词向量 inputs = tf.nn.embedding_lookup(self.word_embedding, src_input) if self.mode == 'train': inputs = tf.nn.dropout(inputs, self.embedding_keep_prob) # LSTM网络计算 with tf.variable_scope('lstm'): outputs, states = tf.nn.bidirectional_dynamic_rnn(self.lstm_fw, self.lstm_bw, inputs, dtype=tf.float32, sequence_length=src_size) final_outputs = tf.concat(outputs, 2) final_outputs = final_outputs[:, -1, :] # 取平均值 # final_outputs = tf.reduce_mean(tf.concat(outputs, 2), 1) # 全连接层计算 with tf.variable_scope('fc'): logits = tf.matmul(final_outputs, self.weight) + self.bias if self.mode == 'predict': return logits # 损失函数 with tf.variable_scope('loss'): loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label, logits=logits) cost = tf.reduce_mean(loss) # 准确率 with tf.variable_scope('accuracy'): correct_prediction = tf.equal(tf.argmax(logits, 1), label) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) if self.mode == 'eval': return cost, accuracy # 定义反向操作 trainable_variables = tf.trainable_variables() # 控制梯度大小,定义优化方法和训练步骤 grads = tf.gradients(cost, trainable_variables) grads, _ = tf.clip_by_global_norm(grads, self.config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(learning_rate=self.config.learning_rate) train_op = optimizer.apply_gradients(zip(grads, trainable_variables)) return logits, cost, accuracy, train_op
我命名为run_classifier,完全照搬Bert。
flags = tf.flags FLAGS = flags.FLAGS flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.") flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.") flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.") flags.DEFINE_integer("num_train_epochs", 4, "Total epoches for train.") flags.DEFINE_string( "data_dir", "E:/NLP/NLP_Deep_Learning_Summary/datasets", "The input data dir. Should contain the .tsv files (or other data files) for the task.") flags.DEFINE_string("init_checkpoint", None, "Initial checkpoint") flags.DEFINE_string("vocab_file", "./vocab.txt", "The vocabulary file.") flags.DEFINE_string("output_file", "./model1", "The output file for trained model.") flags.DEFINE_bool("do_train", True, "Whether to run training.") flags.DEFINE_bool("do_eval", True, "Whether to run eval on the dev set.") flags.DEFINE_bool("do_predict", False, "Whether to run the model in inference mode on the test set.")
为了从训练/测试数据中获得tfrecord文件,需要做Example与Feature类的处理。DataProcessor与Bert源码几乎相同,功能为从tsv文件中得到example类的数据。
tsv文件的各个字段为:index(id)、category(商品类别)、polarity(情感,0或1)、text(原始文字)。
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text, label=None):
"""Constructs a InputExample."""
self.guid = guid
self.text = text
self.label = label
由于使用的是lstm,其特征包含:每条语料原始的词id、原始的长度(即词数)与原始的分类标签。
class InputFeatures(object):
def __init__(self, input_ids, input_size, label):
self.input_ids = input_ids
self.input_size = input_size
self.label = label
class DataProcessor(object): def get_train_examples(self, data_dir): lines = self._read_tsv(os.path.join(data_dir, "online_shopping_train.tsv")) return self._create_examples(lines, 'train') def get_dev_examples(self, data_dir): lines = self._read_tsv(os.path.join(data_dir, "online_shopping_dev.tsv")) return self._create_examples(lines, 'dev') def get_test_examples(self, data_dir): lines = self._read_tsv(os.path.join(data_dir, "online_shopping_test.tsv")) return self._create_examples(lines, 'test') @staticmethod def get_labels(): return ["0", "1"] # return ['蒙牛', '水果', '洗发水', '平板', '酒店', '手机', '计算机', '书籍', '衣服', '热水器'] @staticmethod def _create_examples(lines, set_type): examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text = tokenization.convert_to_unicode(line[3]) label = tokenization.convert_to_unicode(line[2]) examples.append( InputExample(guid=guid, text=text, label=label)) return examples @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with tf.gfile.Open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines
也是模仿Bert的写法写的(甚至保留了打印前五条example)。
# 将一个example类的训练数据转成feature类 def convert_single_example(ex_index, example, tokenizer): text = example.text tokens = tokenizer.tokenize(text) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_size = len(input_ids) label = int(example.label) # 打印前5条转换的记录 if ex_index < 5: tf.logging.info("*** Example ***") tf.logging.info("guid: %s" % example.guid) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_size: %s" % input_size) tf.logging.info("label: %s" % label) feature = InputFeatures(input_ids=input_ids, input_size=input_size, label=label) return feature # 将准备喂入模型的数据存成tfrecord文件 def file_based_convert_examples_to_features(examples, tokenizer, output_file): writer = tf.python_io.TFRecordWriter(output_file) for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: tf.logging.info("Writing example %d of %d" % (ex_index, len(examples))) feature = convert_single_example(ex_index, example, tokenizer) def create_int_feature(values): f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return f features = collections.OrderedDict() features['input_ids'] = create_int_feature(feature.input_ids) features['input_size'] = create_int_feature([feature.input_size]) features['label'] = create_int_feature([feature.label]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) writer.close()
终于又有相对原创的代码了。这里在做batch的同时对input_ids做了padding的处理。效果即input_fn_builder,只是改了名字,调整了结构。
def file_based_dataset_loader(input_file, is_training, batch_size, num_epochs): # TfRecord的解析函数 def parse_func(serialized_example): name_to_features = { "input_ids": tf.VarLenFeature(tf.int64), "input_size": tf.FixedLenFeature(shape=(1,), dtype=tf.int64), "label": tf.FixedLenFeature(shape=(1,), dtype=tf.int64), } parsed_example = tf.parse_single_example(serialized_example, features=name_to_features) parsed_example['input_ids'] = tf.sparse_tensor_to_dense(parsed_example['input_ids']) input_ids = parsed_example['input_ids'] input_size = parsed_example['input_size'] label = parsed_example['label'] return input_ids, input_size, label dataset = tf.data.TFRecordDataset(input_file) dataset = dataset.map(parse_func) if is_training: dataset = dataset.repeat(num_epochs).shuffle(buffer_size=100) padded_shapes = (tf.TensorShape([None]), # 语料数据,None即代表batch_size tf.TensorShape([None]), # 语料数据各个句子的原始长度 tf.TensorShape([None])) # 标签数据,None即代表batch_size # 调用padded_batch方法进行batching操作 batched_dataset = dataset.padded_batch(batch_size, padded_shapes) # dataset = dataset.batch(batch_size) return batched_dataset
模型运行的函数,单独拿出来。
def run_epoch(session, cost_op, accuracy_op, train_op, step):
while True:
try:
cost, accuracy, _ = session.run([cost_op, accuracy_op, train_op])
if step % 100 == 0:
tf.logging.info('Steps: {0}, Loss value: {1},Accuracy: {2}'.format(
step, cost, accuracy))
step += 1
except tf.errors.OutOfRangeError:
break
主程序。在config配置里直接写明了词典文件的词数。
另外,不管是在构建词典文件,处理待预测的句子,都没有做去停用词的步骤。
def main(): config = modelling.LstmConfig(vocab_size=68355) tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file) processor = DataProcessor() if FLAGS.do_train: # 定义训练用循环神经网络模型 train_model = modelling.LstmModel(config, mode='train') train_examples = processor.get_train_examples(FLAGS.data_dir) num_train_steps = int(len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs) train_file = r'./tmp/train.tfrecord' file_based_convert_examples_to_features(train_examples, tokenizer, train_file) # 获得训练数据 train_data = file_based_dataset_loader(train_file, is_training=True, batch_size=FLAGS.train_batch_size, num_epochs=FLAGS.num_train_epochs) train_iterator = train_data.make_initializable_iterator() input_ids, input_sizes, labels = train_iterator.get_next() input_sizes = tf.reshape(input_sizes, shape=(-1,)) labels = tf.reshape(labels, shape=(-1,)) # 定义前向计算图,输入数据以张量的形式提供给forward函数 _, cost_op, accuracy_op, train_op = train_model.forward(input_ids, input_sizes, labels) # # TensorFlow持久化类 saver = tf.train.Saver() step = 0 # 训练模型 tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Total training steps: {}".format(num_train_steps)) with tf.Session() as sess: tf.global_variables_initializer().run() sess.run(train_iterator.initializer) run_epoch(sess, cost_op, accuracy_op, train_op, step) tf.logging.info("********* Training Step Finished *********") saver.save(sess, r'./model/lstm.ckpt') if FLAGS.do_eval: tf.reset_default_graph() eval_model = modelling.LstmModel(config, mode='eval') eval_examples = processor.get_dev_examples(FLAGS.data_dir) eval_file = r'./tmp/eval.tfrecord' file_based_convert_examples_to_features(eval_examples, tokenizer, eval_file) # 获得测试数据 eval_data = file_based_dataset_loader(eval_file, is_training=False, batch_size=FLAGS.eval_batch_size, num_epochs=None) eval_iterator = eval_data.make_initializable_iterator() eval_input_ids, eval_input_sizes, eval_labels = eval_iterator.get_next() eval_input_sizes = tf.reshape(eval_input_sizes, shape=(-1,)) eval_labels = tf.reshape(eval_labels, shape=(-1,)) eval_cost_op, eval_accuracy_op = eval_model.forward(eval_input_ids, eval_input_sizes, eval_labels) # 测试模型 eval_step = 0 tf.logging.info("***** Running Eval *****") tf.logging.info(" Num examples = %d", len(eval_examples)) with tf.Session() as sess_eval: tf.global_variables_initializer().run() sess_eval.run(eval_iterator.initializer) saver = tf.train.Saver() saver.restore(sess_eval, r'./model/lstm.ckpt') tf.logging.info("*** Restore finished ***") eval_cost = 0 eval_correct = 0 while True: try: cost, accuracy = sess_eval.run([eval_cost_op, eval_accuracy_op]) eval_cost += cost / FLAGS.eval_batch_size eval_correct += accuracy * FLAGS.eval_batch_size eval_step += 1 except tf.errors.OutOfRangeError: break eval_cost = eval_cost / (len(eval_examples) / FLAGS.eval_batch_size) eval_accuracy = eval_correct / len(eval_examples) print('Eval Cost: {0}, Eval Accuracy: {1}'.format(eval_cost, eval_accuracy)) with open(r'./model/eval_result.txt', 'w', encoding='utf-8') as f: f.write('Eval Cost: {0}, Eval Accuracy: {1}'.format(eval_cost, eval_accuracy)) if __name__ == '__main__': main()
重新写了convert_single_example方法。
由于只是少量单句的预测,因此没有做生成tfrecord并解析的处理,而是直接做了padding的处理。
import tensorflow as tf import tokenization import modelling from run_classifier import InputExample, InputFeatures # 将一个example类的训练数据转成feature类 def convert_single_example(example, tokenizer): text = example.text tokens = tokenizer.tokenize(text) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_size = len(input_ids) feature = InputFeatures(input_ids=input_ids, input_size=input_size, label=None) return feature def main(data): tokenizer = tokenization.FullTokenizer(vocab_file=r'./vocab.txt') config = modelling.LstmConfig(vocab_size=68355) input_ids = [] input_sizes = [] max_length = 0 for index in range(len(data)): guid = 'test-%d' % index text = tokenization.convert_to_unicode(str(data[index])) data_example = InputExample(guid=guid, text=text, label=None) data_feature = convert_single_example(example=data_example, tokenizer=tokenizer) print(data_feature.input_ids) if len(data_feature.input_ids) > max_length: max_length = len(data_feature.input_ids) input_ids.append(data_feature.input_ids) input_sizes.append(data_feature.input_size) for input_id in input_ids: if len(input_id) < max_length: input_id.extend((max_length-len(input_id)) * [0]) input_ids = tf.convert_to_tensor(input_ids) input_sizes = tf.convert_to_tensor(input_sizes) predict_model = modelling.LstmModel(config, mode='predict') output_op = predict_model.forward(input_ids, input_sizes, label=None) with tf.Session() as sess: saver = tf.train.Saver() saver.restore(sess, r'./model/lstm.ckpt') output = sess.run(output_op) print(output) print(tf.argmax(output, 1).eval()) if __name__ == '__main__': text = ['这个房间真的很棒,又舒服又便宜', '这个房间太差了,又贵又破,不推荐', '一句很普通很中立的话'] main(text)
同样的训练集与测试集,在Bert上跑完的准确度是0.946,用lstm,在2个epoch上且没有调整学习率的情况下,跑完准确度有0.897。其中Bert模型在服务器上跑了三天两夜,lstm在本机cpu上跑了一个半小时。结果还可以。
tf.estimator,这个高级封装的api似乎很牛逼,Bert中也使用了这个api,要继续学习学习。牵扯到model_fn的构建。我理解应该是重新复构模型的结构。在modelling中应该只定义模型结构,对于前向传播的过程,都到model_fn中完成。但是具体的操作还需要进一步的了解。
不得不说,虽然这样的代码可能还是不算高级,但是已经比我之前自己写的初版,在结构上要清楚太多了。同时也对tf.dataset有了比较深的了解(之前的next_batch都是完全自己写的,这里用dataset的iterator就可以搞定)。やはり多读读牛逼的源码是很有用的。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。