赞
踩
自动化机器学习(Auto-ML)是指数据科学模型开发的管道组件自动化。AutoML 减少了数据科学家的工作量并加快了工作流程。AutoML 可用于自动化各种管道组件,包括数据理解,EDA,数据处理,模型训练,超参数调整等。
对于端到端机器学习项目,每个组件的复杂性取决于项目。我们知道市面上有很多的 AutoML 开源库可加快开发的速度。在本文中,我将分享一个非常棒的python工具库「LazyPredict」。
LazyPredict是一个开源Python库,可自动执行模型训练管道并加快工作流程。LazyPredict可以为分类数据集训练约30个分类模型,为回归数据集训练约40个回归模型。
LazyPredict将返回经过训练的模型以及其性能指标,而无需编写太多代码。可以轻松比较每个模型的性能指标,并调整最佳模型以进一步提高性能。
可以使用以下方法从PyPl库中安装LazyPredict:
pip install lazypredict
安装后,可以导入库以执行分类和回归模型的自动训练。
from lazypredict.Supervised import LazyRegressor, LazyClassifier
LazyPredict 同时支持分类和回归问题,因此我将利用案例说明:波士顿住房(回归)和泰坦尼克号(分类)数据集用于LazyPredict库的演示。
LazyPredict 的用法非常直观,类似于scikit-learn。首先为分类任务创建一个估计器 LazyClassifier 的实例,可以通过自定义指标进行评估,默认情况下,每个模型都将根据准确性,ROC、AUC得分, F1-score进行评估。
在进行 lazypredict 模型训练之前,必须先读取数据集并进行处理,以使其适合训练。在进行特征工程并将数据拆分为训练测试数据之后,我们可以使用 LazyPredict 进行模型训练。
- # LazyClassifier Instance and fiting data
- cls= LazyClassifier(ignore_warnings=False, custom_metric=None)
- models, predictions = cls.fit(X_train, X_test, y_train, y_test)
与分类模型训练相似,LazyPredict附带了针对回归数据集的自动模型训练。该实现类似于分类任务,只是实例LazyRegressor有所更改。
- reg = LazyRegressor(ignore_warnings=False, custom_metric=None)
- models, predictions = reg.fit(X_train, X_test, y_train, y_test)
观察以上性能指标,AdaBoost分类器是分类任务的最佳表现模型,而GradientBoostingRegressor模型是回归任务的最佳表现模型。
- from lazypredict.Supervised import LazyClassifier
- from sklearn.datasets import load_breast_cancer
- from sklearn.model_selection import train_test_split
-
- data = load_breast_cancer()
- X = data.data
- y= data.target
-
- X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.5,random_state =123)
-
- clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)
- models,predictions = clf.fit(X_train, X_test, y_train, y_test)
-
- print(models)
-
-
- | Model | Accuracy | Balanced Accuracy | ROC AUC | F1 Score | Time Taken |
- |:-------------------------------|-----------:|--------------------:|----------:|-----------:|-------------:|
- | LinearSVC | 0.989474 | 0.987544 | 0.987544 | 0.989462 | 0.0150008 |
- | SGDClassifier | 0.989474 | 0.987544 | 0.987544 | 0.989462 | 0.0109992 |
- | MLPClassifier | 0.985965 | 0.986904 | 0.986904 | 0.985994 | 0.426 |
- | Perceptron | 0.985965 | 0.984797 | 0.984797 | 0.985965 | 0.0120046 |
- | LogisticRegression | 0.985965 | 0.98269 | 0.98269 | 0.985934 | 0.0200036 |
- | LogisticRegressionCV | 0.985965 | 0.98269 | 0.98269 | 0.985934 | 0.262997 |
- | SVC | 0.982456 | 0.979942 | 0.979942 | 0.982437 | 0.0140011 |
- | CalibratedClassifierCV | 0.982456 | 0.975728 | 0.975728 | 0.982357 | 0.0350015 |
- | PassiveAggressiveClassifier | 0.975439 | 0.974448 | 0.974448 | 0.975464 | 0.0130005 |
- | LabelPropagation | 0.975439 | 0.974448 | 0.974448 | 0.975464 | 0.0429988 |
- | LabelSpreading | 0.975439 | 0.974448 | 0.974448 | 0.975464 | 0.0310006 |
- | RandomForestClassifier | 0.97193 | 0.969594 | 0.969594 | 0.97193 | 0.033 |
- | GradientBoostingClassifier | 0.97193 | 0.967486 | 0.967486 | 0.971869 | 0.166998 |
- | QuadraticDiscriminantAnalysis | 0.964912 | 0.966206 | 0.966206 | 0.965052 | 0.0119994 |
- | HistGradientBoostingClassifier | 0.968421 | 0.964739 | 0.964739 | 0.968387 | 0.682003 |
- | RidgeClassifierCV | 0.97193 | 0.963272 | 0.963272 | 0.971736 | 0.0130029 |
- | RidgeClassifier | 0.968421 | 0.960525 | 0.960525 | 0.968242 | 0.0119977 |
- | AdaBoostClassifier | 0.961404 | 0.959245 | 0.959245 | 0.961444 | 0.204998 |
- | ExtraTreesClassifier | 0.961404 | 0.957138 | 0.957138 | 0.961362 | 0.0270066 |
- | KNeighborsClassifier | 0.961404 | 0.95503 | 0.95503 | 0.961276 | 0.0560005 |
- | BaggingClassifier | 0.947368 | 0.954577 | 0.954577 | 0.947882 | 0.0559971 |
- | BernoulliNB | 0.950877 | 0.951003 | 0.951003 | 0.951072 | 0.0169988 |
- | LinearDiscriminantAnalysis | 0.961404 | 0.950816 | 0.950816 | 0.961089 | 0.0199995 |
- | GaussianNB | 0.954386 | 0.949536 | 0.949536 | 0.954337 | 0.0139935 |
- | NuSVC | 0.954386 | 0.943215 | 0.943215 | 0.954014 | 0.019989 |
- | DecisionTreeClassifier | 0.936842 | 0.933693 | 0.933693 | 0.936971 | 0.0170023 |
- | NearestCentroid | 0.947368 | 0.933506 | 0.933506 | 0.946801 | 0.0160074 |
- | ExtraTreeClassifier | 0.922807 | 0.912168 | 0.912168 | 0.922462 | 0.0109999 |
- | CheckingClassifier | 0.361404 | 0.5 | 0.5 | 0.191879 | 0.0170043 |
- | DummyClassifier | 0.512281 | 0.489598 | 0.489598 | 0.518924 | 0.0119965 |
-

- from lazypredict.Supervised import LazyRegressor
- from sklearn import datasets
- from sklearn.utils import shuffle
- import numpy as np
-
- boston = datasets.load_boston()
- X, y = shuffle(boston.data, boston.target, random_state=13)
- X = X.astype(np.float32)
-
- offset = int(X.shape[0] * 0.9)
-
- X_train, y_train = X[:offset], y[:offset]
- X_test, y_test = X[offset:], y[offset:]
-
- reg = LazyRegressor(verbose=0, ignore_warnings=False, custom_metric=None)
- models, predictions = reg.fit(X_train, X_test, y_train, y_test)
-
- print(models)
-
-
- | Model | Adjusted R-Squared | R-Squared | RMSE | Time Taken |
- |:------------------------------|-------------------:|----------:|------:|-----------:|
- | SVR | 0.83 | 0.88 | 2.62 | 0.01 |
- | BaggingRegressor | 0.83 | 0.88 | 2.63 | 0.03 |
- | NuSVR | 0.82 | 0.86 | 2.76 | 0.03 |
- | RandomForestRegressor | 0.81 | 0.86 | 2.78 | 0.21 |
- | XGBRegressor | 0.81 | 0.86 | 2.79 | 0.06 |
- | GradientBoostingRegressor | 0.81 | 0.86 | 2.84 | 0.11 |
- | ExtraTreesRegressor | 0.79 | 0.84 | 2.98 | 0.12 |
- | AdaBoostRegressor | 0.78 | 0.83 | 3.04 | 0.07 |
- | HistGradientBoostingRegressor | 0.77 | 0.83 | 3.06 | 0.17 |
- | PoissonRegressor | 0.77 | 0.83 | 3.11 | 0.01 |
- | LGBMRegressor | 0.77 | 0.83 | 3.11 | 0.07 |
- | KNeighborsRegressor | 0.77 | 0.83 | 3.12 | 0.01 |
- | DecisionTreeRegressor | 0.65 | 0.74 | 3.79 | 0.01 |
- | MLPRegressor | 0.65 | 0.74 | 3.80 | 1.63 |
- | HuberRegressor | 0.64 | 0.74 | 3.84 | 0.01 |
- | GammaRegressor | 0.64 | 0.73 | 3.88 | 0.01 |
- | LinearSVR | 0.62 | 0.72 | 3.96 | 0.01 |
- | RidgeCV | 0.62 | 0.72 | 3.97 | 0.01 |
- | BayesianRidge | 0.62 | 0.72 | 3.97 | 0.01 |
- | Ridge | 0.62 | 0.72 | 3.97 | 0.01 |
- | TransformedTargetRegressor | 0.62 | 0.72 | 3.97 | 0.01 |
- | LinearRegression | 0.62 | 0.72 | 3.97 | 0.01 |
- | ElasticNetCV | 0.62 | 0.72 | 3.98 | 0.04 |
- | LassoCV | 0.62 | 0.72 | 3.98 | 0.06 |
- | LassoLarsIC | 0.62 | 0.72 | 3.98 | 0.01 |
- | LassoLarsCV | 0.62 | 0.72 | 3.98 | 0.02 |
- | Lars | 0.61 | 0.72 | 3.99 | 0.01 |
- | LarsCV | 0.61 | 0.71 | 4.02 | 0.04 |
- | SGDRegressor | 0.60 | 0.70 | 4.07 | 0.01 |
- | TweedieRegressor | 0.59 | 0.70 | 4.12 | 0.01 |
- | GeneralizedLinearRegressor | 0.59 | 0.70 | 4.12 | 0.01 |
- | ElasticNet | 0.58 | 0.69 | 4.16 | 0.01 |
- | Lasso | 0.54 | 0.66 | 4.35 | 0.02 |
- | RANSACRegressor | 0.53 | 0.65 | 4.41 | 0.04 |
- | OrthogonalMatchingPursuitCV | 0.45 | 0.59 | 4.78 | 0.02 |
- | PassiveAggressiveRegressor | 0.37 | 0.54 | 5.09 | 0.01 |
- | GaussianProcessRegressor | 0.23 | 0.43 | 5.65 | 0.03 |
- | OrthogonalMatchingPursuit | 0.16 | 0.38 | 5.89 | 0.01 |
- | ExtraTreeRegressor | 0.08 | 0.32 | 6.17 | 0.01 |
- | DummyRegressor | -0.38 | -0.02 | 7.56 | 0.01 |
- | LassoLars | -0.38 | -0.02 | 7.56 | 0.01 |
- | KernelRidge | -11.50 | -8.25 | 22.74 | 0.01 |
-

在本文中,我们讨论了LazyPredict库的实现,该库可以在几行Python代码中训练大约70个分类和回归模型。这是一个非常方便的工具,因为它提供了模型执行的总体情况,并且可以比较每个模型的性能。
每个模型都使用其默认参数进行训练,因为它不执行超参数调整。选择性能最佳的模型后,开发人员可以调整模型以进一步提高性能。
- 往期精彩回顾
-
-
-
- 适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
- AI基础下载机器学习的数学基础专辑温州大学《机器学习课程》视频
- 本站qq群851320808,加入微信群请扫码:
-
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。