当前位置:   article > 正文

SQL优化选对执行计划,查询速度提升1000倍 | OceanBase 应用实践_oceanbase复制sql查询效率

oceanbase复制sql查询效率
作者:爱可生数据库高级工程师任仲禹,擅长故障分析和性能优化。

本文通过一个案例,分享使用OceanBase时,SQL走错执行计划,而导致慢SQL的排查方法论。

案例背景

在使用OceanBase 3.2.3 版本的过程中,项目组反映某个 SELECT 语句在指定时间内的查询响应速度异常缓慢,其耗时远超正常情况的1000倍以上。具体细节如下:

  • 慢 SELECT
SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31' ;
  • 关键表结构、记录数信息如下
  1. -- 脱敏处理
  2. show create table renzy\G
  3. *************************** 1. row ***************************
  4. Table: renzy
  5. Create Table: CREATE TABLE `renzy` (
  6. `ID` char(18) COLLATE utf8mb4_bin NOT NULL COMMENT ,
  7. ...
  8. `ACCT_NO` char(40) COLLATE utf8mb4_bin NOT NULL COMMENT ,
  9. ...
  10. `ACCTG_DT` date DEFAULT NULL COMMENT ,
  11. ...
  12. PRIMARY KEY (`ID`),
  13. ...
  14. KEY `renzy_I2` (`ACCT_NO`) BLOCK_SIZE 16384 LOCAL,
  15. ...
  16. KEY `renzy_I5` (`ACCTG_DT`, `ENQ_INST_CD`, `BLON_INST_CD`, `EMRG_STPY_SRC_CD`) BLOCK_SIZE 16384 LOCAL,
  17. ...
  18. ) DEFAULT CHARSET = utf8mb4;
  19. 1 row in set (0.01 sec)
  20. MySQL > SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882');
  21. +---------+
  22. | TOT_CNT |
  23. +---------+
  24. | 1 |
  25. +---------+
  26. 1 row in set (0.02 sec)
  27. MySQL > SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31';
  28. +----------+
  29. | TOT_CNT |
  30. +----------+
  31. | 25432155 |
  32. +----------+
  33. 1 row in set (12.42 sec)
  34. MySQL > SELECT COUNT(*) AS TOT_CNT FROM renzy;
  35. +----------+
  36. | TOT_CNT |
  37. +----------+
  38. | 25435024 |
  39. +----------+
  40. 1 row in set (10.65 sec)

排查过程

正常执行不慢

  1. MySQL > select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000; select last_trace_id();
  2. +---------+
  3. | TOT_CNT |
  4. +---------+
  5. | 1 |
  6. +---------+
  7. 1 row in set (0.02 sec)

以下是执行计划,从中可见,索引I2是最高效的选择,它在进行等值匹配时仅需要执行一次回表操作。

  1. *************************** 1. row ***************************
  2. Query Plan: ========================================================
  3. |ID|OPERATOR |NAME |EST. ROWS|COST|
  4. --------------------------------------------------------
  5. |0 |LIMIT | |1 |92 |
  6. |1 | SCALAR GROUP BY| |1 |92 |
  7. |2 | TABLE SCAN |renzy(renzy_I2)|1 |92 |
  8. ========================================================
  9. ...
  10. Outline Data:
  11. -------------------------------------
  12. /*+
  13. BEGIN_OUTLINE_DATA
  14. INDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I2")
  15. END_OUTLINE_DATA
  16. */
  17. ...
  18. renzy:table_rows:25419080, physical_range_rows:1, logical_range_rows:1, index_back_rows:1, output_rows:0, est_method:local_storage, optimization_method=cost_based, avaiable_index_name[renzy_I2,renzy_I5], pruned_index_name[renzy_I1,renzy_I3,renzy_I4,renzy_I6], unstable_index_name[renzy], estimation info[table_id:1105009185965290, (table_type:1, version:0-1699898410195654-1699898410195654, logical_rc:1, physical_rc:1), (table_type:7, version:1699898401860480-1699898401860480-1699898433101378, logical_rc:0, physical_rc:0), (table_type:7, version:1699898433101378-1699904137032515-1699905915658079, logical_rc:0, physical_rc:0), (table_type:5, version:1699898433101378-1699904137032515-1699905915658079, logical_rc:0, physical_rc:0), (table_type:0, version:1699905915658079-1699905915658079-9223372036854775807, logical_rc:0, physical_rc:0)]
  19. ...

通过 OCP 的 SQL 诊断获取慢 SQL 的 plan_id,检查慢 SQL 实际命中的 plan。

  1. MySQL [oceanbase]> select * from gv$plan_cache_plan_stat where plan_id=7288229 \G
  2. *************************** 1. row ***************************
  3. ...
  4. plan_id: 7288229
  5. ...
  6. statement: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = ?) AND LAWENF_NTIST_TP_CD NOT LIKE ? AND LAWENF_NTIST_TP_CD NOT LIKE ? AND EMRG_STPY_SRC_CD != ? AND ACCTG_DT >= ? AND ACCTG_DT <= ?) as orginal limit 2000
  7. query_sql: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000
  8. special_params: 2000
  9. param_infos: {1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,17},{1,0,0,-1,17}
  10. sys_vars: 45,45,12582912,2,4,1,0,0,32,3,1,0,1,1,0,10485760,1,1,0,1,BINARY,BINARY,AL32UTF8,AL16UTF16,BYTE,FALSE,1,100,64,200,0,13,NULL,1,1,1,1
  11. plan_hash: 10428103352368081688
  12. first_load_time: 2023-11-14 10:14:11.578250
  13. schema_version: 1699927892190832
  14. merged_version: 287
  15. last_active_time: 2023-11-14 11:04:58.127020
  16. avg_exe_usec: 35858760
  17. slowest_exe_time: 2023-11-14 11:04:58.127020
  18. slowest_exe_usec: 171575101
  19. slow_count: 2
  20. hit_count: 7
  21. plan_size: 81984
  22. executions: 8
  23. disk_reads: 1136285
  24. direct_writes: 0
  25. buffer_gets: 18067948
  26. application_wait_time: 0
  27. concurrency_wait_time: 0
  28. user_io_wait_time: 0
  29. rows_processed: 8
  30. elapsed_time: 286870087
  31. cpu_time: 229807460
  32. large_querys: 2
  33. delayed_large_querys: 1
  34. delayed_px_querys: 0
  35. outline_version: 0
  36. outline_id: -1
  37. outline_data: /*+ BEGIN_OUTLINE_DATA INDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I5") END_OUTLINE_DATA*/
  38. ....
  39. 1 row in set (0.09 sec)
  40. MySQL [oceanbase]> select * from oceanbase.gv$plan_cache_plan_explain where tenant_id=1005 and port=2882 and plan_id=7288229 and ip='12.240.26.70'\G
  41. ....
  42. PLAN_LINE_ID: 2
  43. OPERATOR: PHY_TABLE_SCAN
  44. NAME: renzy(renzy_I5)
  45. ROWS: 0
  46. COST: 91
  47. PROPERTY: table_rows:25419080, physical_range_rows:1, logical_range_rows:1, index_back_rows:0, output_rows:0, est_method:local_storage, avaiable_index_name[renzy_I2,renzy_I5]
  48. ...

上述结果的关键信息如下

1.query_sql :为该plan第一次执行时的SQL语句。

2.first_load_time :缓存该plan并hit的时间。

3.slowest_exe_usec :该计划的最慢耗时。

4.outline_id : 是否命中了绑定的outline,-1即未命中。

5.statement :参数化后的SQL语句。

6.name : 该plan走的索引。

分析下第一次的SQL为啥要走 I5 索引

通过下面执行计划和执行耗时可知,第一次执行的语句因为字段 ACCTG_DT 检索不到数据,所以走 I5 效率最高。

  1. MySQL > explain extended select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000\G
  2. *************************** 1. row ***************************
  3. Query Plan: ========================================================
  4. |ID|OPERATOR |NAME |EST. ROWS|COST|
  5. --------------------------------------------------------
  6. |0 |LIMIT | |1 |92 |
  7. |1 | SCALAR GROUP BY| |1 |92 |
  8. |2 | TABLE SCAN |renzy(renzy_I5)|0 |92 |
  9. ========================================================
  10. Outline Data:
  11. -------------------------------------
  12. /*+
  13. BEGIN_OUTLINE_DATA
  14. INDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I5")
  15. END_OUTLINE_DATA
  16. */
  17. renzy:table_rows:25419080, physical_range_rows:1, logical_range_rows:1, index_back_rows:0, output_rows:0, est_method:local_storage, optimization_method=cost_based, avaiable_index_name[renzy_I2,renzy_I5], pruned_index_name[renzy_I1,renzy_I3,renzy_I4,renzy_I6], unstable_index_name[renzy]
  18. MySQL > select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000;
  19. +---------+
  20. | TOT_CNT |
  21. +---------+
  22. | 0 |
  23. +---------+
  24. 1 row in set, 2 warnings (0.02 sec)

分析下后续SQL为何不淘汰该plan

我们知道,SQL查询并不需要每次生成查询计划,因为这样涉及到硬解析等耗费性能的操作,所以默认每次会先查询 Plan Cache (硬解析操作包含词法/语法/语义解析,优化器统计信息查询等步骤,参考下图)。

1716357409

本案例中,后续的SQL命中该 Plan 就可以理解,因为要走 I5 索引,range太大基本为全索引扫描,所以耗时太慢。,

ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31'

什么时候淘汰这个计划呢?

  1. // 关键代码段如下(410bp1社区版,这里的逻辑和323bp8企业版类似,企业版代码不便贴出)
  2. if (sample_count < SLOW_QUERY_SAMPLE_SIZE) {
  3. // do nothing when query execution samples are not enough
  4. } else {
  5. if (stat_.cpu_time_ <= SLOW_QUERY_TIME_FOR_PLAN_EXPIRE * stat_.execute_times_) {
  6. // do nothing for fast query
  7. } else if (is_plan_unstable(sample_count, sample_exec_row_count, sample_exec_usec)) {
  8. set_is_expired(true);
  9. }
  10. ATOMIC_STORE(&(stat_.sample_times_), 0);
  11. }
  12. }
  13. bool ObPhysicalPlan::is_plan_unstable(const int64_t sample_count,
  14. const int64_t sample_exec_row_count,
  15. const int64_t sample_exec_usec)
  16. {
  17. bool bret = false;
  18. if (sample_exec_usec <= SLOW_QUERY_TIME_FOR_PLAN_EXPIRE * sample_count) {
  19. // sample query is fast query in the average
  20. } else if (OB_PHY_PLAN_LOCAL == plan_type_) {
  21. int64_t first_query_range_rows = ATOMIC_LOAD(&stat_.first_exec_row_count_);
  22. if (sample_exec_row_count <= SLOW_QUERY_ROW_COUNT_THRESOLD * sample_count) {
  23. // the sample query does not accesses too many rows in the average
  24. } else if (sample_exec_row_count / sample_count > first_query_range_rows * 10) {
  25. // the average sample query range row count increases great
  26. bret = true;
  27. LOG_INFO("local query plan is expired due to unstable performance",
  28. K(bret), K(stat_.execute_times_),
  29. K(first_query_range_rows), K(sample_exec_row_count), K(sample_count));
  30. }
  31. } else if ( OB_PHY_PLAN_DISTRIBUTED == plan_type_) {
  32. int64_t first_exec_usec = ATOMIC_LOAD(&stat_.first_exec_usec_);
  33. if (sample_exec_usec / sample_count > first_exec_usec * 2) {
  34. // the average sample query execute time increases great
  35. bret = true;
  36. LOG_INFO("distribute query plan is expired due to unstable performance",
  37. K(bret), K(stat_.execute_times_), K(first_exec_usec),
  38. K(sample_exec_usec), K(sample_count));
  39. }
  40. } else {
  41. // do nothing
  42. }
  43. return bret;
  44. }

这里淘汰一个 Plan 需要满足的条件有2个:

  • sample_count < SLOW_QUERY_SAMPLE_SIZE)
  • sample_exec_row_count / sample_count > first_query_range_rows * 10

这里的 SLOW_QUERY_SAMPLE_SIZE 是常量,OB410的定义是 20;sample_count(采样次数)实质为Plan的SQL执行次数。

static const int64_t SLOW_QUERY_SAMPLE_SIZE = 20; // smaller than ObPlanStat::MAX_SCAN_STAT_SIZE

结合上下文代码来看,意思是满足如下情况就会淘汰Plan:

  • 命中该Plan的SQL执行大于等于20次。
  • (执行的SQL扫描总行数 / 执行次数) 大于  (第一次SQL执行扫描的行数 * 10)

复现以验证

1.清空 plan cache,执行业务第一次生成 Plan 的 SQL。

  1. MySQL > alter system flush plan cache;
  2. Query OK, 0 rows affected (0.13 sec)
  3. MySQL > select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000;
  4. +---------+
  5. | TOT_CNT |
  6. +---------+
  7. | 0 |
  8. +---------+
  9. 1 row in set, 2 warnings (0.02 sec)

2.执行业务 SQL,复现慢的情况。

  1. MySQL > select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000;
  2. +---------+
  3. | TOT_CNT |
  4. +---------+
  5. | 1 |
  6. +---------+
  7. 1 row in set (2 min 51.61 sec)
  8. MySQL > select last_trace_id();
  9. +-----------------------------------+
  10. | last_trace_id() |
  11. +-----------------------------------+
  12. | YB420CF01A46-0006009AD91C51ED-0-0 |
  13. +-----------------------------------+
  14. 1 row in set (0.04 sec)
  15. MySQL > select * from oceanbase.gv$sql_audit where trace_id='YB420CF01A46-0006009AD91C51ED-0-0'\G ...
  16. TRACE_ID: YB420CF01A46-0006009AD91C51ED-0-0
  17. ...
  18. SQL_ID: 2B53F4C1C330C2C089C7518CD71D667A
  19. QUERY_SQL: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000
  20. ...
  21. ELAPSED_TIME: 171575101
  22. ...
  23. EXECUTE_TIME: 171574843
  24. ...
  25. MEMSTORE_READ_ROW_COUNT: 25416176
  26. SSSTORE_READ_ROW_COUNT: 50832349
  27. ...

这里通过 sql_audit 可以观测到重要的信息:

  • ELAPSED_TIME : 执行耗时。
  • MEMSTORE_READ_ROW_COUNT / SSSTORE_READ_ROW_COUNT : 这条SQL扫描的行数。
  1. MySQL [oceanbase]> select * from gv$plan_cache_plan_stat where plan_id=7289113 \G
  2. *************************** 1. row ***************************
  3. ...
  4. sql_id: 2B53F4C1C330C2C089C7518CD71D667A
  5. ...
  6. statement: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = ?) AND LAWENF_NTIST_TP_CD NOT LIKE ? AND LAWENF_NTIST_TP_CD NOT LIKE ? AND EMRG_STPY_SRC_CD != ? AND ACCTG_DT >= ? AND ACCTG_DT <= ?) as orginal limit 2000
  7. query_sql: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000
  8. ...
  9. outline_id: -1
  10. outline_data: /*+ BEGIN_OUTLINE_DATA INDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I5") END_OUTLINE_DATA*/
  11. ...

通过 plan_cache_plan_stat 可看到这条SQL命中了第一次SQL执行时生成的 Plan(不符合预期)。

3.继续通过脚本执行多次。

  1. #!/bin/bash
  2. for i in `seq 1 30`
  3. do
  4. echo ">>> do $i"
  5. mysql -h12.240.68.36 -P3306 -uroot@tgabsua2g00#obcdcbsuat01 -pOceanBase_123# -Dgabsdb -A -c -NBe "select now();select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000; select last_trace_id();select now();"
  6. done
  7. # ./1.sh
  8. ...
  9. >>> do 17 # 耗时 2分钟27s 命中
  10. 2023-11-14 16:05:36
  11. 1
  12. YB420CF01A46-0006009B016C66EE-0-0
  13. 2023-11-14 16:08:03
  14. >>> do 18 # 耗时 2min12s 命中
  15. 2023-11-14 16:08:03
  16. 1
  17. YB420CF01A46-0006009AFF8FF46D-0-0
  18. 2023-11-14 16:10:15
  19. >>> do 19 # 耗时 2min36s 命中
  20. 2023-11-14 16:10:15
  21. 1
  22. YB420CF01A46-0006009B012FF1D0-0-0
  23. 2023-11-14 16:12:51
  24. >>> do 20 # 耗时 1s内 未命中,恢复正常
  25. 2023-11-14 16:12:51
  26. 1
  27. YB420CF01A46-0006009AFEBDA7C6-0-0
  28. 2023-11-14 16:12:51
  29. >>> do 21
  30. 2023-11-14 16:12:51
  31. 1
  32. YB420CF01A46-0006009B016F1561-0-0
  33. 2023-11-14 16:12:52
  34. ...

可以观察到,命中该 Plan 的SQL 执行次数大于 20 次(含手工执行)后,该"不符合预期的" Plan 被淘汰。

4. 再次执行的SQL的 sql_audit 和 plan_cache_plan_stat,可看到重新生成了 Plan。

  1. MySQL > select * from oceanbase.gv$sql_audit where trace_id='YB420CF01A46-0006009AFEBDA7C6-0-0'\G
  2. SQL_ID: 2B53F4C1C330C2C089C7518CD71D667A
  3. QUERY_SQL: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000
  4. ...
  5. ELAPSED_TIME: 207
  6. PLAN_ID: 7334178
  7. ...
  8. MEMSTORE_READ_ROW_COUNT: 1
  9. SSSTORE_READ_ROW_COUNT: 2
  10. MySQL [oceanbase]> select * from gv$plan_cache_plan_stat where plan_id=7334178 \G
  11. *************************** 1. row ***************************
  12. ...
  13. plan_id: 7334178
  14. sql_id: 2B53F4C1C330C2C089C7518CD71D667A
  15. ...
  16. statement: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = ?) AND LAWENF_NTIST_TP_CD NOT LIKE ? AND LAWENF_NTIST_TP_CD NOT LIKE ? AND EMRG_STPY_SRC_CD != ? AND ACCTG_DT >= ? AND ACCTG_DT <= ?) as orginal limit 2000
  17. query_sql: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000
  18. ...
  19. first_load_time: 2023-11-14 16:12:51.547434
  20. ...
  21. slowest_exe_time: 2023-11-14 16:12:51.547618
  22. slowest_exe_usec: 4139
  23. ...
  24. elapsed_time: 8279
  25. ...
  26. outline_id: -1
  27. outline_data: /*+ BEGIN_OUTLINE_DATA INDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I2") END_OUTLINE_DATA*/
  28. ...

5.obs日志关键信息

  1. #grep YB420CF01A46-0006009B012FF1D0-0-0 observer.log.20231114161*|less
  2. observer.log.20231114161017:[2023-11-14 16:10:15.813150] INFO [SQL] ob_sql.cpp:1769 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=17] [dc=0] It is a large query, need delay, do not need disconnect(avg_process_time=123860984, exec_cnt=20, large_query_threshold=5000000, plan->get_plan_id()=7328133, ret=-4023)
  3. observer.log.20231114161017:[2023-11-14 16:10:15.813208] TRACE [TRACE]obmp_base.cpp:156 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=18] [dc=0] [packet retry query](TRACE=begin_ts=1699949415813080 2023-11-14 08:10:15.813080|[start_sql] u=0 addr:{ip:"12.241.29.28", port:16606}|[process_begin] u=0 addr:{ip:"12.241.29.28", port:16606}, in_queue_time:13, receive_ts:1699949415813066, enqueue_ts:1699949415813067, trace_id:YB420CF01A46-0006009B012FF1D0-0-0|[session] u=3 sid:3221784053, tenant_id:1005|[parse_begin] u=10 stmt:"select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000", stmt_len:287|[process_end] u=85 run_ts:1699949415813082|total_timeu=98)
  4. observer.log.20231114161302:[2023-11-14 16:12:51.412696] INFO [SQL.ENG] ob_physical_plan.cpp:736 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=15] [dc=0] local query plan is expired due to unstable performance(bret=true, stat_.execute_times_=21, first_query_range_rows=0, sample_exec_row_count=1525906500, sample_count=20)
  5. observer.log.20231114161302:[2023-11-14 16:12:51.412725] WARN [SHARE.SCHEMA] revert (ob_schema_mgr_cache.cpp:131) [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=11] [dc=0] long time to hold one guard(schema_mgr=0x7ee87934c610, tenant_id=1, version=1697523399752200, cur_timestamp=1699949571412714, ref_timestamp=1699949415812628, lbt()="0xf51231f 0x6158f04 0x4f5992c 0x50c61cc 0x4ed2f6f 0x4ecf518 0x4ecc8ef 0x4ecaa6e 0xb8c71f1 0x4ec9c90 0xb8c4d31 0x4ec58f6 0xb8c52a7 0xf3f17f3 0xf3f164f 0xf6901df")
  6. observer.log.20231114161302:[2023-11-14 16:12:51.412738] WARN [SHARE.SCHEMA] revert (ob_schema_mgr_cache.cpp:131) [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=8] [dc=0] long time to hold one guard(schema_mgr=0x7edddba39170, tenant_id=1005, version=1699931135472584, cur_timestamp=1699949571412734, ref_timestamp=1699949415812628, lbt()="0xf51231f 0x6158f04 0x4f5992c 0x50c61cc 0x4ed2f6f 0x4ecf518 0x4ecc8ef 0x4ecaa6e 0xb8c71f1 0x4ec9c90 0xb8c4d31 0x4ec58f6 0xb8c52a7 0xf3f17f3 0xf3f164f 0xf6901df")
  7. observer.log.20231114161302:[2023-11-14 16:12:51.412798] TRACE [TRACE]obmp_base.cpp:147 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=5] [dc=0] [slow query](TRACE=begin_ts=1699949415813229 2023-11-14 08:10:15.813229|[start_sql] u=0 addr:{ip:"12.241.29.28", port:16606}|[process_begin] u=0 addr:{ip:"12.241.29.28", port:16606}, in_queue_time:162, receive_ts:1699949415813066, enqueue_ts:1699949415813225, trace_id:YB420CF01A46-0006009B012FF1D0-0-0|[session] u=2 sid:3221784053, tenant_id:1005|[parse_begin] u=6 stmt:"select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000", stmt_len:287|[exec_begin] u=29 arg1:false, end_trans_cb:false, plan_id:7328133|[do_open_plan_begin] u=8 |[sql_start_stmt_begin] u=1 |[sql_start_participant_begin] u=5 |[storage_table_scan_begin] u=56 |[storage_table_scan_end] u=116 |[get_row] u=155437570 |[result_set_close] u=161554 |[close_plan_begin] u=0 |[revert_scan_iter] u=96 |[end_participant_begin] u=3 |[start_end_stmt] u=1 |[affected_rows] u=0 affected_rows:-1|[store_found_rows] u=1 found_rows:0, return_rows:1|[auto_end_plan_begin] u=0 |[process_end] u=86 run_ts:1699949415813230|total_timeu=155599534)

第21次执行的SQL的关键日志信息:

[2023-11-14 16:12:51.412696] INFO  [SQL.ENG] ob_physical_plan.cpp:736 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=15] [dc=0] local query plan is expired due to unstable performance(bret=true, stat_.execute_times_=21, first_query_range_rows=0, sample_exec_row_count=1525906500, sample_count=20)

由该日志,关键信息如下:

1. sample_exec_row_count=1525906500

2. sample_count=20

3. first_query_range_rows=0

结合代码可知该结果满足 Plan 淘汰条件,从而 plan expire。

  1. sample_exec_row_count / sample_count > first_query_range_rows * 10
  2. 1525906500 / 20 > 0 * 10
  3. // 这里 1525906500 的结果,不难得知,是单次SQL扫描行数 * 20.
  4. // 即(25416176 + 50832349* 20 = 1524970500 约等于 1525906500
  5. MEMSTORE_READ_ROW_COUNT: 25416176
  6. SSSTORE_READ_ROW_COUNT: 50832349

结论

1.本例主要是想分享SQL走错 Plan 而SQL慢的排查方法论,问题原因还是比较简单,重点是和大家分享处理OB遇到类似问题的思路等。

2.本例问题在当前OB 323版本中没有好的优化方式,给到的建议是:

  • 如果 I5 索引业务上未使用场景,则删除。
  • 绑定 outline,使该SQL走 I2 索引。

3.分享下OB中 Plan Cache 清理策略:

  • 手工清理
  1. -- 租户内执⾏,清除当前租户中所有 Plan Cache。⽣产慎⽤。
  2. ALTER SYSTEM FLUSH PLAN CACHE;
  3. -- sys租户下执⾏,不同粒度。
  4. ALTER SYSTEM FLUSH PLAN CACHE TENANT = 'T_MySQL';
  5. ALTER SYSTEM FLUSH PLAN CACHE sql_id='B601070DFC14CB85FDA3766A69A9E1B3'
  6. databases='myob1' tenant='tenant1' GLOBAL;
  • 自动清理 ob_plan_cache_percentage 参数控制 Plan Cache占用租户内存的百分比。 本例中提到

1. sample_count < SLOW_QUERY_SAMPLE_SIZE) :命中该Plan的SQL执行大于等于20次。 

2.sample_exec_row_count / sample_count > first_query_range_rows * 10 :(执行的SQL扫描总行数 / 执行次数) 大于 (第一次SQL执行扫描的行数 * 10)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/爱喝兽奶帝天荒/article/detail/846061
推荐阅读
  

闽ICP备14008679号