赞
踩
在机器学习中让输入的数据之间相关性越少越好,最好输入的每个样本都是均值为0方差为1。在输入神经网络之前可以对数据进行处理让数据消除共线性,但是这样的话输入层的激活层看到的是一个分布良好的数据,但是较深的激活层看到的的分布就没那么完美了,分布将变化的很严重。这样会使得训练神经网络变得更加困难。所以添加BatchNorm层,在训练的时候BN层使用batch来估计数据的均值和方差,然后用均值和方差来标准化这个batch的数据,并且随着不同的batch经过网络,均值和方差都在做累计平均。在测试的时候就直接作为标准化的依据。
这样的方法也有可能导致降低神经网络的表示能力,因为某些层的全局最优的特征可能不是均值为0或者方差为1的。所以BN层也是能够进行学习每个特征维度的缩放gamma和平移beta的来避免这样的情况。
def batchnorm_forward(x, gamma, beta, bn_param): """先进行标准化再进行平移缩放 running_mean = momentum * running_mean + (1 - momentum) * sample_mean running_var = momentum * running_var + (1 - momentum) * sample_var Input: - x: (N, D) 输入的数据 - gamma: (D,) 每个特征维度数据的缩放 - beta: (D,) 每个特征维度数据的偏移 - bn_param: 字典,有如下键值: - mode: 'train'/'test' 必须指定 - eps: 一个常量为了维持数值稳定,保证不会除0 - momentum: 动量 - running_mean: (D,) 积累的均值 - running_var: (D,) 积累的方差 Returns: - out: (N,D) - cache: 反向传播时需要的数据 """ mode = bn_param['mode'] eps = bn_param.get('eps', 1e-5) momentum = bn_param.get('momentum', 0.9) N, D = x.shape running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype)) running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype)) out, cache = None, None if mode == 'train': sample_mean = np.mean(x, axis=0) sample_var = np.var(x, axis=0) # 先标准化 x_hat = (x - sample_mean)/(np.sqrt(sample_var + eps)) # 再做缩放偏移 out = gamma * x_hat + beta cache = (gamma, x, sample_mean, sample_var, eps, x_hat) running_mean = momentum * running_mean + (1-momuntum)*sample_mean running_var = momentum * running_var + (1-momentum)*sample_var elif mode == 'test': # 先标准化 #x_hat = (x - running_mean)/(np.sqrt(running_var+eps)) # 再做缩放偏移 #out = gamma * x_hat + beta # 或者是下面的骚写法 scale = gamma/(np.sqrt(running_var + eps)) out = x*scale + (beta - running_mean*scale) else: raise ValueError('Invalid forward batchnorm mode "%s"' % mode) bn_param['running_mean'] = running_mean bn_param['running_var'] = running_var return out, cache
def batchnorm_barckward(out, cache): """反向传播的简单写法,易于理解 Inputs: - dout: (N,D) dloss/dout - cache: (gamma, x, sample_mean, sample_var, eps, x_hat) Returns: - dx: (N,D) - dgamma: (D,) 每个维度的缩放和平移参数不同 - dbeta: (D,) """ dx, dgamma, dbeta = None, None, None # unpack cache gamma, x, u_b, sigma_squared_b, eps, x_hat = cache N = x.shape[0] dx_1 = gamma * dout # dloss/dx_hat = dloss/dout * gamma (N, D) dx_2_b = np.sum((x - u_b) * dx_1, axis=0) dx_2_a = ((sigma_squared_b + eps)**-0.5)*dx_1 dx_3_b = (-0.5) * ((sigma_squared_b + eps)**-1.5)*dx_2_b dx_4_b = dx_3_b * 1 dx_5_b = np.ones_like(x)/N * dx_4_b dx_6_b = 2*(x-u_b)*dx_5_b dx_7_a = dx_6_b*1 + dx_2_a*1 dx_7_b = dx_6_b*1 * dx_2_a*1 dx_8_b = -1*np.sum(dx_7_b, axis=0) dx_9_b = np.ones_like(x)/N * dx_8_b dx_10 = dx_9_b + dx_7_a dgamma = np.sum(x_hat * dout, axis=0) dbeta = np.sum(dout, axis=0) dx = dx_10 return dx, dgamma, dbeta
下面是直接使用公式来计算:
def batchnorm_backward_alt(dout, cache): dx, dgamma, dbeta = None, None, None # unpack cache gamma, x, u_b, sigma_squared_b, eps, x_hat = cache N = x.shape[0] dx_hat = dout * gamma dvar = np.sum(dx_hat* (x - sample_mean) * -0.5 * np.power(sample_var + eps, -1.5), axis = 0) dmean = np.sum(dx_hat * -1 / np.sqrt(sample_var +eps), axis = 0) + dvar * np.mean(-2 * (x - sample_mean), axis =0) dx = 1 / np.sqrt(sample_var + eps) * dx_hat + dvar * 2.0 / N * (x-sample_mean) + 1.0 / N * dmean dgamma = np.sum(x_hat * dout, axis = 0) dbeta = np.sum(dout , axis = 0) return dx, dgamma, dbeta
def spatial_batchnorm_forward(x, gamma, beta, bn_param): """利用普通神经网络的BN来实现卷积神经网络的BN Inputs: - x: (N, C, H, W) - gamma: (C,)缩放系数 - beta: (C,)平移系数 - bn_param: 包含如下键的字典 - mode: 'train'/'test'必须的键 - eps: 数值稳定需要的一个较小的值 - momentum: 一个常量,用来处理running mean和var的。如果momentum=0 那么之前不利用之前的均值和方差。momentum=1表示不利用现在的均值和方差,一般设置momentum=0.9 - running_mean: (C,) - running_var: (C,) Returns: - out: (N, C, H, W) - cache: 反向传播需要的数据,这里直接使用了普通神经网络的cache """ N, C, H, W = x.shape # transpose之后(N, W, H, C) channel在这里就可以看成是特征 temp_out, cache = batchnorm_forward(x.transpose(0, 3, 2, 1).reshape((N*H*W, C)), gamma, beta, bn_param) # 再恢复shape out = temp_output.reshape(N, W, H, C).transpose(0, 3, 2, 1) return out, cache
def spatial_batchnorm_backward(dout, cache): """利用普通神经网络的BN反向传播实现卷积神经网络中的BN反向传播 Inputs: - dout: (N, C, H, W) 反向传播回来的导数 - cache: 前向传播时的中间数据 Returns: - dx: (N, C, H, W) - dgamma: (C,) 缩放系数的导数 - dbeta: (C,) 偏移系数的导数 """ dx, dgamma, dbeta = None, None, None N, C, H, W = dout.shape # 利用普通神经网络的BN进行计算 (N*H*W, C)channel看成是特征维度 dx_temp, dgamma, dbeta = batchnorm_backward_alt(dout.transpose(0, 3, 2, 1).reshape((N*H*W, C)), cache) # 将shape恢复 dx = dx_temp.reshape(N, W, H, C).transpose(0, 3, 2, 1) return dx, dgamma, dbeta
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。