赞
踩
class xgboost.XGBRegressor (max_depth=3, learning_rate=0.1, n_estimators=100, silent=True,
objective='reg:linear', booster='gbtree', n_jobs=1, nthread=None, gamma=0, min_child_weight=1, max_delta_step=0,subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1,base_score=0.5, random_state=0, seed=None, missing=None, importance_type='gain', **kwargs)
提升集成算法:重要参数n_estimators
XGBoost的基础是梯度提升算法,因此我们必须先从了解梯度提升算法开始。梯度提升(Gradient boosting)是构建预测模型的最强大技术之一,它是集成算法中提升法(Boosting)的代表算法。集成算法通过在数据上构建多个弱评估器,汇总所有弱评估器的建模结果,以获取比单个模型更好的回归或分类表现。弱评估器被定义为是表现至少比随机猜测更好的模型,即预测准确率不低于50%的任意模型。
集成不同弱评估器的方法有很多种。有像我们曾经在随机森林的课中介绍的,一次性建立多个平行独立的弱评估器的装袋法。也有像我们今天要介绍的提升法这样,逐一构建弱评估器,经过多次迭代逐渐累积多个弱评估器的方法。提升法的中最著名的算法包括Adaboost和梯度提升树,XGBoost就是由梯度提升树发展而来的。梯度提升树中可以有回归树也可以有分类树,两者都以CART树算法作为主流,XGBoost背后也是CART树,这意味着XGBoost中所有的树都是二叉的。接下来,我们就以梯度提升回归树为例子,来了解一下Boosting算法是怎样工作的。
定义绘制以训练样本数为横坐标的学习曲线的函数
使用学习曲线观察XGB在波士顿数据集上的潜力
使用参数学习曲线观察n_estimators对模型的影响
进化的学习曲线:方差与泛化误差
在过去我们往往直接取学习曲线获得的分数的最高点,即考虑偏差最小的点,是因为模型极度不稳定,方差很大的情况其实比较少见。但现在我们的数据量非常少,模型会相对不稳定,因此我们应当将方差也纳入考虑的范围。在绘制学习曲线时,我们不仅要考虑偏差的大小,还要考虑方差的大小,更要考虑泛化误差中我们可控的部分。当然,并不是说可控的部分比较小,整体的泛化误差就一定小,因为误差有时候可能占主导。让我们基于这种思路,来改进学习曲线:
细化学习曲线,找出最佳n_estimators
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。