赞
踩
微调框架:LLaMA-Efficient-Tuning
训练机器:4*RTX3090TI (24G显存)
python环境:python3.8, 安装requirements.txt
依赖包
1)创建模型输出目录
mkdir -p models/baichuan2_13b_chat/train_models/baichuan2_13b_chat_multi_gpus_03_epoch100/train_model
2)创建deepspeed配置文件目录
mkdir -p models/baichuan2_13b_chat/deepspeed_config
3)创建deepspeed配置文件
vi models/baichuan2_13b_chat/deepspeed_config/ds_config_baichuan2_13b_chat_multi_gpus_03_epoch100.json
{ "bf16": { "enabled": true }, "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupDecayLR", "params": { "last_batch_iteration": -1, "total_num_steps": "auto", "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 2e9, "stage3_max_reuse_distance": 2e9, "stage3_gather_16bit_weights_on_model_save": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false }
4)训练模型
deepspeed --num_nodes 1 --num_gpus 4 --master_port=9901 src/train_bash.py \ --stage sft \ --model_name_or_path baichuan-inc/Baichuan2-13B-Chat \ --do_train \ --dataset example1 \ --template baichuan2 \ --finetuning_type lora \ --lora_rank 16 \ --lora_target W_pack,o_proj,gate_proj,down_proj,up_proj \ --output_dir models/baichuan2_13b_chat/train_models/baichuan2_13b_chat_multi_gpus_03_epoch100/train_model \ --overwrite_cache \ --per_device_train_batch_size 4 \ --gradient_accumulation_steps 4 \ --preprocessing_num_workers 4 \ --lr_scheduler_type cosine \ --logging_steps 10 \ --save_steps 100 \ --learning_rate 5e-3 \ --max_grad_norm 0.5 \ --num_train_epochs 300.0 \ --evaluation_strategy steps \ --plot_loss \ --bf16 \ --deepspeed models/baichuan2_13b_chat/deepspeed_config/ds_config_baichuan2_13b_chat_multi_gpus_03_epoch100.json
[INFO|trainer.py:1686] 2023-09-19 04:07:47,607 >> ***** Running training *****
[INFO|trainer.py:1687] 2023-09-19 04:07:47,607 >> Num examples = 94
[INFO|trainer.py:1688] 2023-09-19 04:07:47,608 >> Num Epochs = 300
[INFO|trainer.py:1689] 2023-09-19 04:07:47,608 >> Instantaneous batch size per device = 4
[INFO|trainer.py:1692] 2023-09-19 04:07:47,608 >> Total train batch size (w. parallel, distributed & accumulation) = 64
[INFO|trainer.py:1693] 2023-09-19 04:07:47,608 >> Gradient Accumulation steps = 4
[INFO|trainer.py:1694] 2023-09-19 04:07:47,608 >> Total optimization steps = 300
[INFO|trainer.py:1695] 2023-09-19 04:07:47,612 >> Number of trainable parameters = 55,787,520
{'loss': 7.7023, 'learning_rate': 0.00488255033557047, 'epoch': 6.67}
{'loss': 7.0675, 'learning_rate': 0.004714765100671141, 'epoch': 13.33}
8%|█████████▊ | 25/300 [17:10<3:07:01, 40.81s/it]
python src/cli_demo.py \
--model_name_or_path baichuan-inc/Baichuan2-13B-Chat \
--template baichuan2 \
--finetuning_type lora \
--checkpoint_dir models/baichuan2_13b_chat/train_models/baichuan2_13b_chat_multi_gpus_03_epoch100/train_model
1)我用的是3090TI显卡,使用fp16精度时,训练结果始终没有效果,而且训练到后面有(loss为0)的问题。这个不清楚时什么原因。所以需要采用bf16,deepspeed配置文件中要将bf16配置为true。训练时添加参数–bf16 。
所以如果显卡不是 3090TI ,可以尝试用 --fp16。
Refer:
2)deepspeed中 stage
需要选择 3 。尝试过 2 ,内存会溢出。
3) 报错:AttributeError: 'Parameter' object has no attribute 'ds_status'
; 解决办法:关闭验证集,比如 --val_size 0.01, --load_best_model_at_end
Refer:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。