当前位置:   article > 正文

【机器学习】 特征值分解、奇异值分解与PCA的原理_特征值分解原理

特征值分解原理

1、PCA的原理

C是X的协方差矩阵,R是Y的协方差矩阵,二者都是一个对称矩阵 协方差矩阵的对角线以外的值都是n维变量各分量之间的相关性的度量值,当值为0时表示两个分量无关,即相互独立,此时我们得到的变量具有很好的统计特性,便于处理,即我们的目标是找到正交矩阵P使下式成立

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/271784?site
推荐阅读
相关标签
  

闽ICP备14008679号