赞
踩
服务器配置最终结果:
环境中部分安装包列表:
1、安装requestment.txt需求包
2、pip install yolo
3、pip install ultralytics
4、终端命令:python setup.py develop (这一步是为了使后续更改后的本地模型生效)
使用到了一个检测垃圾桶是否装满的一个公开数据集【垃圾桶满溢检测数据集】-计算机视觉数据集-极市开发者平台 (cvmart.net)
该数据集图片格式为JPG,注释文件格式为xml。为VOC的格式,下面将进行数据集格式的转换。
在项目根目录下创建一个datasets文件夹,下载后数据集解压到该文件夹下,重新命名为garbage_classification
解压后的garbage_classification中含两个分别装jpg图片和xml注释文件的文件夹(自命名为image和xml)
自建文件夹dataSet和labels(后续使用)
其中dataSet 文件夹下面存放训练集、验证集、测试集的划分(四个txt文件),通过数据集划分脚本生成——创建一个split_train_val.py文件,代码内容如下:
- # coding:utf-8
-
- import os
- import random
- import argparse
-
- parser = argparse.ArgumentParser()
- # xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
- parser.add_argument('--xml_path', default='/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/xml', type=str, help='input xml label path')
- # 数据集的划分,地址选择自己数据下的ImageSets/Main
- parser.add_argument('--txt_path', default='/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/dataSet', type=str, help='output txt label path') # default='dataSet'
- opt = parser.parse_args()
-
- trainval_percent = 1.0
- train_percent = 0.9
- xmlfilepath = opt.xml_path
- txtsavepath = opt.txt_path
- total_xml = os.listdir(xmlfilepath)
- if not os.path.exists(txtsavepath):
- os.makedirs(txtsavepath)
-
- num = len(total_xml)
- list_index = range(num)
- tv = int(num * trainval_percent)
- tr = int(tv * train_percent)
- trainval = random.sample(list_index, tv)
- train = random.sample(trainval, tr)
-
- file_trainval = open(txtsavepath + '/trainval.txt', 'w')
- file_test = open(txtsavepath + '/test.txt', 'w')
- file_train = open(txtsavepath + '/train.txt', 'w')
- file_val = open(txtsavepath + '/val.txt', 'w')
-
- for i in list_index:
- name = total_xml[i][:-4] + '\n'
- if i in trainval:
- file_trainval.write(name)
- if i in train:
- file_train.write(name)
- else:
- file_val.write(name)
- else:
- file_test.write(name)
-
- file_trainval.close()
- file_train.close()
- file_val.close()
- file_test.close()
运行代码得到dataSet 文件夹里的四个数据集划分txt文件。
接下来准备labels,用voc_label.py脚本把数据集格式转换成txt格式,即将每个xml标注提取bbox信息为txt格式,每个图像对应一个txt文件,文件每一行为一个目标的信息,包括class, x_center, y_center, width, height格式。同时生成garbage_classification目录下的train.txt、test.txt、val.txt文件。
voc_label.py代码如下
- # -*- coding: utf-8 -*-
- import xml.etree.ElementTree as ET
- import os
- from os import getcwd
-
- sets = ['train', 'val', 'test']
- classes = ["overflow", "garbage_bin", "garbage"] # 改成自己的类别 满溢垃圾桶,未满垃圾桶,垃圾
- abs_path = os.getcwd()
- print(abs_path)
-
-
- def convert(size, box):
- dw = 1. / (size[0])
- dh = 1. / (size[1])
- x = (box[0] + box[1]) / 2.0 - 1
- y = (box[2] + box[3]) / 2.0 - 1
- w = box[1] - box[0]
- h = box[3] - box[2]
- x = x * dw
- w = w * dw
- y = y * dh
- h = h * dh
- return x, y, w, h
-
-
- def convert_annotation(image_id):
- in_file = open('/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/xml/%s.xml' % (image_id), encoding='UTF-8') # 改路径
- out_file = open('/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/labels/%s.txt' % (image_id), 'w') # 保存路径
- tree = ET.parse(in_file)
- root = tree.getroot()
- size = root.find('size')
- w = int(size.find('width').text)
- h = int(size.find('height').text)
- for obj in root.iter('object'):
- difficult = obj.find('difficult').text
- # difficult = obj.find('Difficult').text
- cls = obj.find('name').text
- if cls not in classes or int(difficult) == 1:
- continue
- cls_id = classes.index(cls)
- xmlbox = obj.find('bndbox')
- b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
- float(xmlbox.find('ymax').text))
- b1, b2, b3, b4 = b
- # 标注越界修正
- if b2 > w:
- b2 = w
- if b4 > h:
- b4 = h
- b = (b1, b2, b3, b4)
- bb = convert((w, h), b)
- out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
-
-
- wd = getcwd()
- for image_set in sets:
- if not os.path.exists('/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/labels/'):
- os.makedirs('/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/labels/')
- image_ids = open('/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/dataSet/%s.txt' % (image_set)).read().strip().split()
- list_file = open('/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/%s.txt' % (image_set), 'w')
- for image_id in image_ids:
- # list_file.write(abs_path + '/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/image/%s.jpg\n' % (image_id))
- list_file.write('/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/image/%s.jpg\n' % (image_id))
- convert_annotation(image_id)
- list_file.close()
garbage.yaml具体代码:(注意修改路径、类别名称names、类别数量nc)
- train: "/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/train.txt"
- val: "/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/val.txt"
- test: "/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/val.txt" # test images (optional)
-
- # Classes
- names:
- 0: overflow
- 1: garbage_bin
- 2: garbage
- nc: 3
从官网下载detect预训练权重,我使用的是yolov8n.pt
文件位于/ultralytics-main/ultralytics/cfg/models/v8/yolov8.yaml
nc修改为对应的类别数
配置参数在defult.yaml文件中,具体的参数含义可见官网注释
进入根目录,终端运行训练代码:
yolo detect train model=/data/usersLearnResourse/ultralytics-main/ultralytics/cfg/models/v8/yolov8.yaml data=/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/garbage.yaml pretrained=/data/users/LearnResourse/ultralytics-main/ultralytics/yolov8n.pt epochs=5 batch=2
开始训练(我以下实际训练用的不是yolov8n(小模型)模型,而是做了改进的yolov8l(大模型)模型,所以参数量高达43,691,504;若模型为yolov8n,参数量应该不会超过一百万)
1、若训练时报错:ValueError: not enough values to unpack (expected 3, got 0)
且图片都为JPEG/JPG格式(图片格式正确),则需检查split_train_val.py和voc_label.py代码中路径是否填写正确。(若train.txt文件里面的内容图片路径不对,多半是这两个文件路径写错了)
2、按照优先级顺序,训练时调用yolo指令时,优先调用环境下安装的ultralytics下的default.yaml(参数配置文件)。所以在本地项目上改动default.yaml文件内容后,再调用yolo命令训练需在命令后加上更改的参数内容(如:yolo detect train model=/data/usersLearnResourse/ultralytics-main/ultralytics/cfg/models/v8/yolov8.yaml data=/data/users/LearnResourse/ultralytics-main/datasets/garbage_classification/garbage.yaml pretrained=/data/users/LearnResourse/ultralytics-main/ultralytics/yolov8n.pt epochs=5 batch=2)。
或者直接更改本地项目default.yaml,并将其覆盖粘贴至环境中的default.yaml文件。
- 环境路径:/data/users/anaconda3/envs/YOLOv8/lib/python3.8/site-packages/ultralytics/cfg/default.yaml
- 本地项目路径:/data/users/LearnResourse/ultralytics-main/ultralytics/cfg/default.yaml
改进模型后可以继续使用预训练参数pretrained(也可不使用),可加快收敛,但可能会出现键值不匹配的报错,需增加过滤键值对的代码。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。