当前位置:   article > 正文

图解数据结构树之AVL树

下列avl树,插入元素65后变为

AVL树(平衡二叉树):

  AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为平衡二叉树。下面是平衡二叉树和非平衡二叉树对比的例图:

  平衡因子(bf):结点的左子树的深度减去右子树的深度,那么显然-1<=bf<=1;

AVL树的作用:

  我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度(O(log2n))同时也由此而决定。但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n)。我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉。这同时也会造成树的平衡性受到破坏,提高它的操作的时间复杂度。
  例如:我们按顺序将一组数据1,2,3,4,5,6分别插入到一颗空二叉查找树和AVL树中,插入的结果如下图:
        

 

 

 

 

 

 

 

  由上图可知,同样的结点,由于插入方式不同导致树的高度也有所不同。特别是在带插入结点个数很多且正序的情况下,会导致二叉树的高度是O(N),而AVL树就不会出现这种情况,树的高度始终是O(lgN).高度越小,对树的一些基本操作的时间复杂度就会越小。这也就是我们引入AVL树的原因

AVL树的基本操作:

  AVL树的操作基本和二叉查找树一样,这里我们关注的是两个变化很大的操作:插入和删除!

  我们知道,AVL树不仅是一颗二叉查找树,它还有其他的性质。如果我们按照一般的二叉查找树的插入方式可能会破坏AVL树的平衡性。同理,在删除的时候也有可能会破坏树的平衡性,所以我们要做一些特殊的处理,包括:单旋转和双旋转!

  AVL树的插入,单旋转的第一种情况---右旋:

  由上图可知:在插入之前树是一颗AVL树,而插入之后结点T的左右子树高度差的绝对值不再 < 1,此时AVL树的平衡性被破坏,我们要对其进行旋转。由上图可知我们是在结点T的左结点的左子树上做了插入元素的操作,我们称这种情况为左左情况,我们应该进行右旋转(只需旋转一次,故是单旋转)。具体旋转步骤是:

  T向右旋转成为L的右结点,同时,Y放到T的左孩子上。这样即可得到一颗新的AVL树,旋转过程图如下:

 

  左左情况的右旋举例:

  AVL树的插入,单旋转的第一种情况---左旋:

 

   由上图可知:在插入之前树是一颗AVL树,而插入之后结点T的左右子树高度差的绝对值不再 < 1,此时AVL树的平衡性被破坏,我们要对其进行旋转。由上图可知我们是在结点T的右结点的右子树上做了插入元素的操作,我们称这种情况为右右情况,我们应该进行左旋转(只需旋转一次,故事单旋转)。具体旋转步骤是:

   T向右旋转成为R的左结点,同时,Y放到T的左孩子上。这样即可得到一颗新的AVL树,旋转过程图如下:

 

  右右情况的左旋举例:

  以上就是插入操作时的单旋转情况!我们要注意的是:谁是T谁是L,谁是R还有谁是X,Y,Z!T始终是开始不平衡的左右子树的根节点。显然L是T的左结点,R是T的右节点。X、Y、Y是子树当然也可以为NULL.NULL归NULL,但不能破坏插入时我上面所说的左左情况或者右右情况。

  AVL树的插入,双旋转的第一种情况---左右(先左后右)旋:

 

由  上图可知,我们在T结点的左结点的右子树上插入一个元素时,会使得根为T的树的左右子树高度差的绝对值不再 < 1,如果只是进行简单的右旋,得到的树仍然是不平衡的。我们应该按照如下图所示进行二次旋转:

  

  左右情况的左右旋转实例:

  AVL树的插入,双旋转的第二种情况---右左(先右后左)旋:

  由上图可知,我们在T结点的右结点的左子树上插入一个元素时,会使得根为T的树的左右子树高度差的绝对值不再 < 1,如果只是进行简单的左旋,得到的树仍然是不平衡的。我们应该按照如下图所示进行二次旋转:

  右左情况的右左旋转实例:

AVL树的插入代码实现:(仅供参考)

  懂了以上单旋转和双旋转的原理之后,那么代码写起来也就比较简单了,以下是我写的代码,如果有错还望大家不吝指正。(参考数据结构与算法分析-Weiss著)

  1 #include <iostream>
  2 
  3 using namespace std;
  4 
  5 #define DataType int
  6 
  7 /*
  8     定义AVL树的结构体,链式
  9 */
 10 typedef struct AvlNode{
 11     DataType    data;
 12     AvlNode    * m_pLeft;
 13     AvlNode    * m_pRight;
 14     int height;
 15 }*AvlTree,*Position,AvlNode;
 16 
 17 //求两个数的最大值
 18 int Max(int a,int b)
 19 {
 20     return a>b?a:b;
 21 }
 22 //求树的高度
 23 int Height( AvlTree T)
 24 {
 25     if(NULL == T)
 26         return -1;
 27     else
 28         return T->height;
 29 }
 30 
 31 //单旋转右旋
 32 AvlTree singleRotateWithRight(AvlTree T)
 33 {
 34     AvlTree L = T->m_pLeft;
 35     T->m_pLeft = L->m_pRight;
 36     L->m_pRight = T;
 37     T->height = Max( Height(T->m_pLeft),Height(T->m_pRight) ) + 1;
 38     L->height = Max( Height(L->m_pLeft),Height(L->m_pRight) ) + 1;
 39     return L;    //此时L成为根节点了(可参考AVL的插入的左左情况的右旋图)
 40 }
 41 //单旋转左旋
 42 AvlTree singleRotateWithLeft(AvlTree T)
 43 {
 44     AvlTree R = T->m_pRight;
 45     T->m_pRight = R->m_pLeft;
 46     R->m_pLeft = T;
 47     T->height = Max( Height(T->m_pLeft),Height(T->m_pRight) ) + 1;
 48     R->height = Max( Height(R->m_pLeft),Height(R->m_pRight) ) + 1;
 49     return R;    //此时R成为根节点了(可参考AVL的插入的左左情况的左旋图)
 50 }
 51 //双旋转,先左后右
 52 AvlTree doubleRotateWithLeft(AvlTree T)        //先左后右
 53 {
 54     T->m_pLeft = singleRotateWithLeft(T->m_pLeft);
 55     return singleRotateWithRight(T);
 56 }
 57 //双旋转,先右后左
 58 AvlTree doubleRotateWithRight(AvlTree T)    //先右后左
 59 {
 60     T->m_pRight = singleRotateWithRight(T->m_pRight);
 61     return singleRotateWithLeft(T);
 62 }
 63 AvlTree AvlTreeInsert(AvlTree T, DataType x)
 64 {
 65     if(T == NULL)    //如果树为空
 66     {
 67         T = (AvlNode *)malloc(sizeof(struct AvlNode));
 68         if(T)
 69         {
 70             T->data = x;
 71             T->m_pLeft    = NULL;
 72             T->m_pRight = NULL;
 73             T->height = 0;
 74         }
 75         else
 76         {
 77             cout << "空间不够" << endl;
 78             exit(0);
 79         }
 80     }
 81     else if( x < T->data)        //如果插入到T结点的左子树上
 82     {
 83         T->m_pLeft = AvlTreeInsert(T->m_pLeft,x);    //先插入,后旋转
 84         if(Height(T->m_pLeft) - Height(T->m_pRight) == 2) //只有可能是这个
 85         {
 86             if(x < T->m_pLeft->data)        //左左情况,只需要右旋转
 87             {
 88                 T = singleRotateWithRight( T );
 89             }
 90             else                            //左右情况,双旋转,先左
 91             {            
 92                 T = doubleRotateWithLeft( T );
 93             }
 94         }
 95     }
 96     else if( x > T->data )
 97     {
 98         T->m_pRight = AvlTreeInsert(T->m_pRight,x);
 99         if(Height(T->m_pRight) - Height(T->m_pLeft) == 2)
100         {
101             if(x > T->m_pRight->data)        //右右情况,进行左旋
102             {
103                 T = singleRotateWithLeft( T );
104             }
105             else                            //左右情况,双旋转,先右
106             {
107                 T = doubleRotateWithRight( T );
108             }
109         }
110     }
111     //如果这个数已经存在,那么不进行插入
112     T->height = Max(Height(T->m_pLeft),Height(T->m_pRight)) + 1;
113     return T;
114 }
115 //递归实现中序遍历
116 void inOrderVisitUseRecur(const AvlTree pCurrent)
117 {
118     if(pCurrent)
119     {
120         inOrderVisitUseRecur(pCurrent->m_pLeft);
121         cout << pCurrent->data << " ";
122         if(pCurrent->m_pLeft)
123             cout << " leftChild: "<<pCurrent->m_pLeft->data;
124         else
125             cout << " leftChild: "<<"NULL" ;
126         if(pCurrent->m_pRight)
127             cout << " rightChild: "<<pCurrent->m_pRight->data;
128         else
129             cout << " rightChild: "<< "NULL";
130         cout << endl;
131         inOrderVisitUseRecur(pCurrent->m_pRight);
132     }
133 }
134 int main()
135 {
136     AvlTree root = NULL;
137     root = AvlTreeInsert(root,1);
138     root = AvlTreeInsert(root,2);
139     root = AvlTreeInsert(root,3);
140     root = AvlTreeInsert(root,4);
141     root = AvlTreeInsert(root,5);
142     root = AvlTreeInsert(root,6);
143     root = AvlTreeInsert(root,7);
144     root = AvlTreeInsert(root,8);
145     root = AvlTreeInsert(root,9);
146     root = AvlTreeInsert(root,10);
147     root = AvlTreeInsert(root,11);
148     root = AvlTreeInsert(root,12);
149     root = AvlTreeInsert(root,13);
150     root = AvlTreeInsert(root,14);
151     root = AvlTreeInsert(root,15);
152     inOrderVisitUseRecur(root);
153     return 0;
154 }

 

 

 

 

 

 

转载于:https://www.cnblogs.com/zhuwbox/p/3636783.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/492063
推荐阅读
相关标签
  

闽ICP备14008679号