当前位置:   article > 正文

2024年大数据最新Hadoop集群部署和启动与关闭_启动hadoop(1),全网最具深度的三次握手、四次挥手讲解

2024年大数据最新Hadoop集群部署和启动与关闭_启动hadoop(1),全网最具深度的三次握手、四次挥手讲解

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

  1. 修改core-site.xml文件
      在虚拟机Spark01中,进入Hadoop安装包的/etc/hadoop/目录,执行“vi core-site.xml”命令编辑Hadoop的核心配置文件core-site.xml。如下:
<property>
    <name>fs.defaultFS</name> #配置命名空间管理服务制定通信地址
    <value>hdfs://master</value>
</property>
<property>
    <name>hadoop.tmp.dir</name> #存储临时文件的目录
    <value>/export/servers/hadoop-2.7.4/tmp</value>
</property>
<property>
    <name>ha.zookeeper.quorum</name> #ZooKeeper集群地址
    <value>spark01:2181,spark02:2181,spark03:2181</value>
</property>

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  1. 修改hdfs-site.xml文件
      在虚拟机Spark01中,进入Hadoop安装包的/etc/hadoop/目录,执行“vi hdfs-site.xml”命令编辑HDFS的核心配置文件hdfs-site.xml。
<property>
    <name>dfs.replication</name> #HDFS副本数
    <value>3</value>
</property>
<property>
    <name>dfs.namenode.name.dir</name> #NameNode 节点数据(即元数据)的存放位置
    <value>/export/data/hadoop/namenode</value>
</property>
<property>    
    <name>dfs.datanode.data.dir</name>    #DataNode 节点数据(即数据块)的存放位置
    <value>/export/data/hadoop/datanode</value>    
</property>
<property>
    <name>dfs.nameservices</name> #处理外部访问HDFS的请求
    <value>master</value>
</property>
<property>
    <name>dfs.ha.namenodes.master</name> #定义每个NameNode节点的唯一标识符
    <value>nn1,nn2</value>
</property>
<property>
    <name>dfs.namenode.rpc-address.master.nn1</name> #标识符nn1的RPC服务地址
    <value>spark01:9000</value>
</property>
<property>
    <name>dfs.namenode.rpc-address.master.nn2</name> #标识符nn2的RPC服务地址
    <value>spark02:9000</value>
</property>
<property>
    <name>dfs.namenode.http-address.master.nn1</name>#标识符nn1的HTTP服务地址
    <value>spark01:50070</value>
</property>
<property>
    <name>dfs.namenode.http-address.master.nn2</name>#标识符nn2的HTTP服务地址
    <value>spark02:50070</value>
</property>
<property>
  <name>dfs.namenode.shared.edits.dir</name>#NameNode元数据在JournalNode上的共享存储目录
  <value>qjournal://spark01:8485;spark02:8485;spark03:8485/master</value>
</property>
<property>
    <name>dfs.journalnode.edits.dir</name>#JournalNode存放数据地址
    <value>/export/data/hadoop/journaldata</value>
</property>
<property>
  <name>dfs.client.failover.proxy.provider.master</name>#访问代理类,用于确定当前处于 Active 状态的 NameNode节点
  <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<property>
    <name>dfs.ha.fencing.methods</name>#配置隔离机制,确保集群中只有一个NameNode处于活动状态
    <value>
        sshfence
        shell(/bin/true)
    </value>
</property>
<property>
    <name>dfs.ha.fencing.ssh.private-key-files</name>#sshfence隔离机制需要配置本机密钥地址
    <value>/root/.ssh/id_rsa</value>
</property>
<property>
    <name>dfs.ha.automatic-failover.enabled</name>#开启自动故障状态切换
    <value>true</value>
 </property>
<property>
	<name>dfs.ha.fencing.ssh.connect-timeout</name>#sshfence隔离机制超时时间
	<value>30000</value>
</property>
<property> 
	<name>dfs.webhdfs.enabled</name> #开启webhdfs服务
	<value>true</value> 
</property>

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  1. 修改mapred-site.xml文件
      在虚拟机Spark01中,进入Hadoop安装包的/etc/hadoop/目录,执行“cp mapred-site.xml.template mapred-site.xml”命令,通过复制模板文件方式创建MapReduce
    的核心配置文件mapred-site.xml,执行“vi mapred-site.xml”命令编辑配置文件
    mapred-site.xml ,指定MapReduce运行时框架。如下:
<property>
      <name>mapreduce.framework.name</name>#指定MapReduce 作业运行在 YARN框架之上
      <value>yarn</value>
</property>

  • 1
  • 2
  • 3
  • 4
  • 5
  1. 修改yarn-site.xml文件
      在虚拟机Spark01中,进入Hadoop安装包的/etc/hadoop/目录,执行“cp yarn-site.xml”命令,编辑YARN的核心配置文件yarn-site.xml。如下:
<property>
    <name>yarn.nodemanager.aux-services</name>#配置NodeManager上运行的附属服务,需要配置为mapreduce_shuffle
    <value>mapreduce_shuffle</value>
</property>
<property>
    <name>yarn.resourcemanager.ha.enabled</name>#开启ResourceManager的HA机制
    <value>true</value>
</property>
<property>
    <name>yarn.resourcemanager.cluster-id</name>#自定义ResourceManager集群的标识符
    <value>yarncluster</value>
</property>
<property>
    <name>yarn.resourcemanager.ha.rm-ids</name>#自定义集群中每个ResourceManager节点的唯一标识符
    <value>rm1,rm2</value>
</property>
<property>
    <name>yarn.resourcemanager.hostname.rm1</name>#指定标识符rm1的ResourceManager节点
    <value>spark01</value>
</property>
<property>
    <name>yarn.resourcemanager.hostname.rm2</name>#指定标识符rm2的ResourceManager节点
    <value>spark02</value>
</property>
<property>
    <name>yarn.resourcemanager.zk-address</name>#ZooKeeper集群地址
    <value>spark01:2181,spark02:2181,spark03:2181</value>
</property>
<property>
    <name>yarn.resourcemanager.recovery.enabled</name>#开启自动恢复功能
    <value>true</value>
</property>
<property>
      <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>#开启故障自动转移
      <value>true</value>
</property>
<property>
    <name>yarn.resourcemanager.store.class</name>#ResourceManager存储信息的方式,在HA机制下用ZooKeeper(ZKRMStateStore)作为存储介质
    <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
    <name>yarn.log-aggregation-enable</name>#开启YARN日志
    <value>true</value>
  </property>

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  1. 修改slaves文件
      在虚拟机Spark01中,进入Hadoop安装包的/etc/hadoop/目录,执行“vi slaves”命令,编辑记录Hadoop集群所有DataNode节点和NodeManager节点主机名的文件slaves。如下:
spark01
spark02
spark03

  • 1
  • 2
  • 3
  • 4
  1. 配置Hadoop环境变量
      在虚拟机Spark01中,执行“vi /etc/profile”命令编辑系统环境变量文件profile,
    配置Hadoop系统环境变量。如下:
export HADOOP_HOME=/export/servers/hadoop-2.7.4
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH

  • 1
  • 2
  • 3

系统环境变量文件profile配置完成后保存并退出即可,随后执行“source /etc/profile”命令初始化系统环境变量使配置内容生效。

  1. 分发文件
      为了便于快速配置Hadoop集群中其他服务器,将虚拟机Spark01中的Hadoop安装目录和系统环境变量文件分发到虚拟机Spark02和Spark03。如下:
#将Hadoop安装目录分发到虚拟机Spark02和Spark03
$ scp -r /export/servers/hadoop-2.7.4/ root@spark02:/export/servers/
$ scp -r /export/servers/hadoop-2.7.4/ root@spark03:/export/servers/
#将系统环境变量文件分发到虚拟机Spark02和Spark03
$ scp /etc/profile root@spark02:/etc/
$ scp /etc/profile root@spark03:/etc/

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

完成分发操作,分别在虚拟机Spark02和Spark03中执行“source /etc/profile”命令初始化系统环境变量。

  1. 验证Hadoop环境
      在虚拟机Spark01中,执行“hadoop version”命令查看当前系统环境的Hadoop版本。如下图所示:
    在这里插入图片描述

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

g-JoIgI0Hi-1714878112281)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/855657
推荐阅读
相关标签
  

闽ICP备14008679号