赞
踩
RAG通常指的是"Retrieval-Augmented Generation",即“检索增强的生成”。这是一种结合了检索(Retrieval)和生成(Generation)的机器学习模型,通常用于自然语言处理任务,如文本生成、问答系统等。
我们通过一下几个步骤来完成一个基于京东云官网文档的RAG系统
数据的收集再整个RAG实施过程中无疑是最耗人工的,涉及到收集、清洗、格式化、切分等过程。这里我们使用京东云的官方文档作为知识库的基础。文档格式大概这样:
{
"content": "DDoS IP高防结合Web应用防火墙方案说明\n=======================\n\n\nDDoS IP高防+Web应用防火墙提供三层到七层安全防护体系,应用场景包括游戏、金融、电商、互联网、政企等京东云内和云外的各类型用户。\n\n\n部署架构\n====\n\n\n[![\"部署架构\"](\"https://jdcloud-portal.oss.cn-north-1.jcloudcs.com/cn/image/Advanced%20Anti-DDoS/Best-Practice02.png\")](\"https://jdcloud-portal.oss.cn-north-1.jcloudcs.com/cn/image/Advanced%20Anti-DDoS/Best-Practice02.png\") \n\nDDoS IP高防+Web应用防火墙的最佳部署架构如下:\n\n\n* 京东云的安全调度中心,通过DNS解析,将用户域名解析到DDoS IP高防CNAME。\n* 用户正常访问流量和DDoS攻击流量经过DDoS IP高防清洗,回源至Web应用防火墙。\n* 攻击者恶意请求被Web应用防火墙过滤后返回用户源站。\n* Web应用防火墙可以保护任何公网的服务器,包括但不限于京东云,其他厂商的云,IDC等\n\n\n方案优势\n====\n\n\n1. 用户源站在DDoS IP高防和Web应用防火墙之后,起到隐藏源站IP的作用。\n2. CNAME接入,配置简单,减少运维人员工作。\n\n\n",
"title": "DDoS IP高防结合Web应用防火墙方案说明",
"product": "DDoS IP高防",
"url": "https://docs.jdcloud.com/cn/anti-ddos-pro/anti-ddos-pro-and-waf"
}
每条数据是一个包含四个字段的json,这四个字段分别是"content":文档内容;“title”:文档标题;“product”:相关产品;“url”:文档在线地址
向量数据库是RAG系统的记忆中心。目前市面上开源的向量数据库很多,那个向量库比较好也是见仁见智。本项目中笔者选择则了clickhouse作为向量数据库。选择ck主要有一下几个方面的考虑:
为了简化文档向量化和检索过程,我们使用了longchain的Retriever工具集
首先将文档向量化,代码如下:
from libs.jd_doc_json_loader import JD_DOC_Loader
from langchain_community.document_loaders import DirectoryLoader
root_dir = "/root/jd_docs"
loader = DirectoryLoader(
'/root/jd_docs', glob="**/*.json", loader_cls=JD_DOC_Loader)
docs = loader.load()
langchain 社区里并没有提供针对特定格式的装载器,为此,我们自定义了JD_DOC_Loader来实现加载过程
import json import logging from pathlib import Path from typing import Iterator, Optional, Union from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.helpers import detect_file_encodings logger = logging.getLogger(__name__) class JD_DOC_Loader(BaseLoader): """Load text file. Args: file_path: Path to the file to load. encoding: File encoding to use. If `None`, the file will be loaded with the default system encoding. autodetect_encoding: Whether to try to autodetect the file encoding if the specified encoding fails. """ def __init__( self, file_path: Union[str, Path], encoding: Optional[str] = None, autodetect_encoding: bool = False, ): """Initialize with file path.""" self.file_path = file_path self.encoding = encoding self.autodetect_encoding = autodetect_encoding def lazy_load(self) -> Iterator[Document]: """Load from file path.""" text = "" from_url = "" try: with open(self.file_path, encoding=self.encoding) as f: doc_data = json.load(f) text = doc_data["content"] title = doc_data["title"] product = doc_data["product"] from_url = doc_data["url"] # text = f.read() except UnicodeDecodeError as e: if self.autodetect_encoding: detected_encodings = detect_file_encodings(self.file_path) for encoding in detected_encodings: logger.debug(f"Trying encoding: {encoding.encoding}") try: with open(self.file_path, encoding=encoding.encoding) as f: text = f.read() break except UnicodeDecodeError: continue else: raise RuntimeError(f"Error loading {self.file_path}") from e except Exception as e: raise RuntimeError(f"Error loading {self.file_path}") from e # metadata = {"source": str(self.file_path)} metadata = {"source": from_url, "title": title, "product": product} yield Document(page_content=text, metadata=metadata)
以上代码功能主要是解析json文件,填充Document的page_content字段和metadata字段。
接下来使用langchain 的 clickhouse 向量工具集进行文档入库
import langchain_community.vectorstores.clickhouse as clickhouse
from langchain.embeddings import HuggingFaceEmbeddings
model_kwargs = {"device": "cuda"}
embeddings = HuggingFaceEmbeddings(
model_name="/root/models/moka-ai-m3e-large", model_kwargs=model_kwargs)
settings = clickhouse.ClickhouseSettings(
table="jd_docs_m3e_with_url", username="default", password="xxxxxx", host="10.0.1.94")
docsearch = clickhouse.Clickhouse.from_documents(
docs, embeddings, config=settings)
入库成功后,进行一下检验
import langchain_community.vectorstores.clickhouse as clickhouse
from langchain.embeddings import HuggingFaceEmbeddings
model_kwargs = {"device": "cuda"}~~~~
embeddings = HuggingFaceEmbeddings(
model_name="/root/models/moka-ai-m3e-large", model_kwargs=model_kwargs)
settings = clickhouse.ClickhouseSettings(
table="jd_docs_m3e_with_url_splited", username="default", password="xxxx", host="10.0.1.94")
ck_db = clickhouse.Clickhouse(embeddings, config=settings)
ck_retriever = ck_db.as_retriever(
search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.9})
ck_retriever.get_relevant_documents("如何创建mysql rds")
有了知识库以后,可以构建一个简单的restful 服务,我们这里使用fastapi做这个事儿
from fastapi import FastAPI from pydantic import BaseModel from singleton_decorator import singleton from langchain_community.embeddings import HuggingFaceEmbeddings import langchain_community.vectorstores.clickhouse as clickhouse import uvicorn import json app = FastAPI() app = FastAPI(docs_url=None) app.host = "0.0.0.0" model_kwargs = {"device": "cuda"} embeddings = HuggingFaceEmbeddings( model_name="/root/models/moka-ai-m3e-large", model_kwargs=model_kwargs) settings = clickhouse.ClickhouseSettings( table="jd_docs_m3e_with_url_splited", username="default", password="xxxx", host="10.0.1.94") ck_db = clickhouse.Clickhouse(embeddings, config=settings) ck_retriever = ck_db.as_retriever( search_type="similarity", search_kwargs={"k": 3}) class question(BaseModel): content: str @app.get("/") async def root(): return {"ok"} @app.post("/retriever") async def retriver(question: question): global ck_retriever result = ck_retriever.invoke(question.content) return result if __name__ == '__main__': uvicorn.run(app='retriever_api:app', host="0.0.0.0", port=8000, reload=True)
返回结构大概这样:
[ { "page_content": "云缓存 Redis--Redis迁移解决方案\n###RedisSyncer 操作步骤\n####数据校验\n```\nwget https://github.com/TraceNature/rediscompare/releases/download/v1.0.0/rediscompare-1.0.0-linux-amd64.tar.gz\nrediscompare compare single2single --saddr \"10.0.1.101:6479\" --spassword \"redistest0102\" --taddr \"10.0.1.102:6479\" --tpassword \"redistest0102\" --comparetimes 3\n\n```\n**Github 地址:** [https://github.com/TraceNature/redissyncer-server](\"https://github.com/TraceNature/redissyncer-server\")", "metadata": { "product": "云缓存 Redis", "source": "https://docs.jdcloud.com/cn/jcs-for-redis/doc-2", "title": "Redis迁移解决方案" }, "type": "Document" }, { "page_content": "云缓存 Redis--Redis迁移解决方案\n###RedisSyncer 操作步骤\n####数据校验\n```\nwget https://github.com/TraceNature/rediscompare/releases/download/v1.0.0/rediscompare-1.0.0-linux-amd64.tar.gz\nrediscompare compare single2single --saddr \"10.0.1.101:6479\" --spassword \"redistest0102\" --taddr \"10.0.1.102:6479\" --tpassword \"redistest0102\" --comparetimes 3\n\n```\n**Github 地址:** [https://github.com/TraceNature/redissyncer-server](\"https://github.com/TraceNature/redissyncer-server\")", "metadata": { "product": "云缓存 Redis", "source": "https://docs.jdcloud.com/cn/jcs-for-redis/doc-2", "title": "Redis迁移解决方案" }, "type": "Document" }, { "page_content": "云缓存 Redis--Redis迁移解决方案\n###RedisSyncer 操作步骤\n####数据校验\n```\nwget https://github.com/TraceNature/rediscompare/releases/download/v1.0.0/rediscompare-1.0.0-linux-amd64.tar.gz\nrediscompare compare single2single --saddr \"10.0.1.101:6479\" --spassword \"redistest0102\" --taddr \"10.0.1.102:6479\" --tpassword \"redistest0102\" --comparetimes 3\n\n```\n**Github 地址:** [https://github.com/TraceNature/redissyncer-server](\"https://github.com/TraceNature/redissyncer-server\")", "metadata": { "product": "云缓存 Redis", "source": "https://docs.jdcloud.com/cn/jcs-for-redis/doc-2", "title": "Redis迁移解决方案" }, "type": "Document" } ]
返回一个向量距离最小的list
为了节约算力资源,我们选择qwen 1.8B模型,一张v100卡刚好可以容纳一个qwen模型和一个m3e-large embedding 模型
from fastapi import FastAPI from pydantic import BaseModel from langchain_community.llms import VLLM from transformers import AutoTokenizer from langchain.prompts import PromptTemplate import requests import uvicorn import json import logging app = FastAPI() app = FastAPI(docs_url=None) app.host = "0.0.0.0" logger = logging.getLogger() logger.setLevel(logging.INFO) to_console = logging.StreamHandler() logger.addHandler(to_console) # load model # model_name = "/root/models/Llama3-Chinese-8B-Instruct" model_name = "/root/models/Qwen1.5-1.8B-Chat" tokenizer = AutoTokenizer.from_pretrained(model_name) llm_llama3 = VLLM( model=model_name, tokenizer=tokenizer, task="text-generation", temperature=0.2, do_sample=True, repetition_penalty=1.1, return_full_text=False, max_new_tokens=900, ) # prompt prompt_template = """ 你是一个云技术专家 使用以下检索到的Context回答问题。 如果不知道答案,就说不知道。 用中文回答问题。 Question: {question} Context: {context} Answer: """ prompt = PromptTemplate( input_variables=["context", "question"], template=prompt_template, ) def get_context_list(q: str): url = "http://10.0.0.7:8000/retriever" payload = {"content": q} res = requests.post(url, json=payload) return res.text class question(BaseModel): content: str @app.get("/") async def root(): return {"ok"} @app.post("/answer") async def answer(q: question): logger.info("invoke!!!") global prompt global llm_llama3 context_list_str = get_context_list(q.content) context_list = json.loads(context_list_str) context = "" source_list = [] for context_json in context_list: context = context+context_json["page_content"] source_list.append(context_json["metadata"]["source"]) p = prompt.format(context=context, question=q.content) answer = llm_llama3(p) result = { "answer": answer, "sources": source_list } return result if __name__ == '__main__': uvicorn.run(app='retriever_api:app', host="0.0.0.0", port=8888, reload=True)
代码通过使用Retriever接口查找与问题相似的文档,作为context组合prompt推送给模型生成答案。
主要服务就绪后可以开始画一张脸了,使用gradio做个简易对话界面
import json import gradio as gr import requests def greet(name, intensity): return "Hello, " + name + "!" * int(intensity) def answer(question): url = "http://127.0.0.1:8888/answer" payload = {"content": question} res = requests.post(url, json=payload) res_json = json.loads(res.text) return [res_json["answer"], res_json["sources"]] demo = gr.Interface( fn=answer, # inputs=["text", "slider"], inputs=[gr.Textbox(label="question", lines=5)], # outputs=[gr.TextArea(label="answer", lines=5), # gr.JSON(label="urls", value=list)] outputs=[gr.Markdown(label="answer"), gr.JSON(label="urls", value=list)] ) demo.launch(server_name="0.0.0.0")
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。