赞
踩
spark1 vs spark2 vs spark3
1、spark1引入内存计算的理念,解决中间结果落盘导致的效率低下。在理想状况下性能可达到MR的100倍。虽然提高了一定的计算效率,但也带来了大量的内存管理问题,典型的如内存oom问题频发。
2、spark2引入了Tungsten引擎,关键算子效率上比Spark1提升了10倍。启用“统一内存管理”,不再使用“静态内存管理”,不再使用“静态内存管理”,oom问题大幅下降
3、spark3启用自适应查询(Adaptive Query Execution)
可以简化甚至避免调整shuffle分区的数量。用户可以在开始时设置相对较多的shuffle分区数,AQE会在运行时将相邻的小分区合并为较大的分区。
在一定程度上避免由于缺少统计信息或着错误估计大小(当然也可能两种情况同时存在),而导致执行次优计划的情况。这种自适应优化可以在运行时sort merge join转换成broadcast hash join,从而进一步提升性能
skew joins可能导致负载的极端不平衡,并严重降低性能。在AQE从shuffle文件统计信息中检测到任何倾斜后,它可以将倾斜的分区分割成更小的分区,并将它们与另一侧的相应分区连接起来。这种优化可以并行化倾斜处理,获得更好的整体性能。
Spark内存管理:https://zhuanlan.zhihu.com/p/642722131?utm_id=0
sparksql oom的因素是多样的,一个程序,从输入、处理2个方面进行考量
目前我司新建表默认使用parquet格式
对于snappy压缩,hivesql参考表的“parquet.compression”属性决定是否压缩,采用什么压缩方法,sparksql遇到parquet表默认snappy压缩。
数仓集群默认的文件大小是256M,大数据是分布式计算,普遍存在倾斜不均的情形,加之程序自身的控制,造成了数据文件的大小不一。
尽管spark有输入数据的拆分能力,但扔存在拆分不均匀的可能。例如:原始文件的大小为300M,将拆分为256M+44M 2个文件,他们的数据规模相差5.8倍。按照1个task处理一个文件的设定,分得256M文件的task将更容易出现oom
如字段中包含大量的null、枚举字段大量的相同值等,parquet+snappy将导致实际压缩比进一步提升。
string字段类型,如其中存储的是xml、json等字段(字符长度达千、万字符数级的称为大字段),parquet+snappy导致实际压缩比进一步提升
环境因素也是oom的重要原因,表现在spark默认参数、yarn集群稳定性
定义在集群的spark.defaults中,每一个提交到集群的spark作业都默认使用这套参数。影响oom的主要参数:
spark.executor.cores=4 --executor 4cpu,可并行运行4 task
spark.executor.memory=12g --executor 12g内存,task间共享(不建议调整)
spark.executor.memoryOverhead=2g --executor 2g堆外内存,task间共享(不建议调整)
spark.sql.files.maxPartitionBytes=268435456(256m) --读取数据文件时,单个partition或task最大256m、文件超过256m即拆分
spark.sql.adaptive.coalescePartitions.initialPartitionNum=none --aqe动态计算shuffle阶段partitions的最大值,none时向下取spark.sql.shuffle.partitions
spark.sql.shuffle.partitions=400 --shuffle阶段最大400个partition,数据规模很大建议调整
在spark ui 中可以观察任务的具体参数值
yarn集群稳定性包括yarn资源调度、yarn节点负载高低等。
input阶段将表或数据文件加载到executor,先进行解压(如果有,比如snappy)、展开(比如parquet、orc格式),这些都是在内存中进行,内存不足时是不可溢写磁盘的。
当sql出现出现distinct join、groupby等关键字时,spark需要进行shuffle操作。shuffle操作将前一个或多个阶段的分片数据拉取到同一个excutor进行聚合处理(即我们通常说的reduce),如shuffle partition或者说task数过小,oom是大概率时间。
目前executor默认配置的是12G+2G内存、4核CPU,最大可以有4个task同时并行(每颗CPU执行一个task),这4个task共享14G内存。日常调优可以如下:
1、spark.executors.cores
不论在哪个阶段发生oom,降低executor的负载总是可行的。可调整spark.executor.cores=2,即单个executor同时执行2个task,这样每个task大约可使用7G内存。
2、spark.sql.adaptive.coalescePartitions.initialPartitionNum/spark.sql.shuffle.partitions
shuffle阶段的oom,说明shuffle partitions数比较小,导致上阶段的“大规模数据”在本阶段“更聚集”。可调整该参数为更大的值,使大规模数据更分散。
*注意:更大的shuffle partitions数固然能减轻shuffle阶段的oom概率,但需要向集群申请更多的服务器资源,不可无限调大(建议控制在2000以内)
方案实现原理:增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个 key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。
3、spark.sql.files.maxPartitionBytes
对于input阶段出现的oom,通常原因是输入数据的超高压缩比,如:json、xml大字段、null值占比高、枚举字段多等。
spark.executor.cores值仍不起作用时,可逐步调小spark.sql.files.maxPartitionBytes=134217728(128m)/67108864(64m)
调小spark.executor.cores、spark.sql.files.maxPartitionBytes值的本质都是减小executor的负载,spark.executor.cores减少了task的并行度,而spark.sql.files.maxPartitionBytes减小了单个task处理的数据规模。所以:
*注意:spark.sql.files.maxPartitionBytes不建议调得过小(比如32m、16m),过小需要向集群申请更多executor及计算资源、集群负载增大,也可能导致数据文件碎片化
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。