赞
踩
下面是蚁群算法机器人最短路径规划问题的MATLAB代码
(1代表障碍物)
function main() G=[0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0; 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0; 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0; 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0; 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0; 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0; 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0;]; MM=size(G,1); % G 地形图为01矩阵,如果为1表示障碍物 Tau=ones(MM*MM,MM*MM); % Tau 初始信息素矩阵 Tau=8.*Tau; K=100; %迭代次数(指蚂蚁出动多少波) M=50; %蚂蚁个数 S=1 ; %最短路径的起始点 E=MM*MM; %最短路径的目的点 Alpha=1; % Alpha 表征信息素重要程度的参数 Beta=7; % Beta 表征启发式因子重要程度的参数 Rho=0.3 ; % Rho 信息素蒸发系数 Q=1; % Q 信息素增加强度系数 minkl=inf; mink=0; minl=0; D=G2D(G); N=size(D,1); %N表示问题的规模(象素个数) a=1; %小方格象素的边长 Ex=a*(mod(E,MM)-0.5); %终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM)); %终止点纵坐标 Eta=zeros(N); %启发式信息,取为至目标点的直线距离的倒数 %以下启发式信息矩阵 for i=1:N ix=a*(mod(i,MM)-0.5); if ix==-0.5 ix=MM-0.5; end iy=a*(MM+0.5-ceil(i/MM)); if i~=E Eta(i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5; else Eta(i)=100; end end ROUTES=cell(K,M); %用细胞结构存储每一代的每一只蚂蚁的爬行路线 PL=zeros(K,M); %用矩阵存储每一代的每一只蚂蚁的爬行路线长度 %启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁 for k=1:K for m=1:M %状态初始化 W=S; %当前节点初始化为起始点 Path=S; %爬行路线初始化 PLkm=0; %爬行路线长度初始化 TABUkm=ones(N); %禁忌表初始化 TABUkm(S)=0; %已经在初始点了,因此要排除 DD=D; %邻接矩阵初始化 %下一步可以前往的节点 DW=DD(W,:); DW1=find(DW); for j=1:length(DW1) if TABUkm(DW1(j))==0 DW(DW1(j))=0; end end LJD=find(DW); Len_LJD=length(LJD);%可选节点的个数 %蚂蚁未遇到食物或者陷入死胡同或者觅食停止 while W~=E&&Len_LJD>=1 %转轮赌法选择下一步怎么走 PP=zeros(Len_LJD); for i=1:Len_LJD PP(i)=(Tau(W,LJD(i))^Alpha)*((Eta(LJD(i)))^Beta); end sumpp=sum(PP); PP=PP/sumpp;%建立概率分布 Pcum(1)=PP(1); for i=2:Len_LJD Pcum(i)=Pcum(i-1)+PP(i); end Select=find(Pcum>=rand); to_visit=LJD(Select(1)); %状态更新和记录 Path=[Path,to_visit]; %路径增加 PLkm=PLkm+DD(W,to_visit); %路径长度增加 W=to_visit; %蚂蚁移到下一个节点 for kk=1:N if TABUkm(kk)==0 DD(W,kk)=0; DD(kk,W)=0; end end TABUkm(W)=0; %已访问过的节点从禁忌表中删除 DW=DD(W,:); DW1=find(DW); for j=1:length(DW1) if TABUkm(DW1(j))==0 DW(j)=0; end end LJD=find(DW); Len_LJD=length(LJD);%可选节点的个数 end %记下每一代每一只蚂蚁的觅食路线和路线长度 ROUTES{k,m}=Path; if Path(end)==E PL(k,m)=PLkm; if PLkm<minkl mink=k;minl=m;minkl=PLkm; end else PL(k,m)=0; end end %更新信息素 Delta_Tau=zeros(N,N);%更新量初始化 for m=1:M if PL(k,m) ROUT=ROUTES{k,m}; TS=length(ROUT)-1;%跳数 PL_km=PL(k,m); for s=1:TS x=ROUT(s); y=ROUT(s+1); Delta_Tau(x,y)=Delta_Tau(x,y)+Q/PL_km; Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km; end end end Tau=(1-Rho).*Tau+Delta_Tau;%信息素挥发一部分,新增加一部分 end %绘图 plotif=1;%是否绘图的控制参数 if plotif==1 %绘收敛曲线 minPL=zeros(K); for i=1:K PLK=PL(i,:); Nonzero=find(PLK); PLKPLK=PLK(Nonzero); minPL(i)=min(PLKPLK); end figure(1) plot(minPL); hold on grid on title('收敛曲线变化趋势'); xlabel('迭代次数'); ylabel('最小路径长度'); %绘爬行图 figure(2) axis([0,MM,0,MM]) for i=1:MM for j=1:MM if G(i,j)==1 x1=j-1;y1=MM-i; x2=j;y2=MM-i; x3=j;y3=MM-i+1; x4=j-1;y4=MM-i+1; fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); hold on else x1=j-1;y1=MM-i; x2=j;y2=MM-i; x3=j;y3=MM-i+1; x4=j-1;y4=MM-i+1; fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]); hold on end end end hold on title('机器人运动轨迹'); xlabel('坐标x'); ylabel('坐标y'); ROUT=ROUTES{mink,minl}; LENROUT=length(ROUT); Rx=ROUT; Ry=ROUT; for ii=1:LENROUT Rx(ii)=a*(mod(ROUT(ii),MM)-0.5); if Rx(ii)==-0.5 Rx(ii)=MM-0.5; end Ry(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM)); end plot(Rx,Ry) end plotif2=0;%绘各代蚂蚁爬行图 if plotif2==1 figure(3) axis([0,MM,0,MM]) for i=1:MM for j=1:MM if G(i,j)==1 x1=j-1;y1=MM-i; x2=j;y2=MM-i; x3=j;y3=MM-i+1; x4=j-1;y4=MM-i+1; fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); hold on else x1=j-1;y1=MM-i; x2=j;y2=MM-i; x3=j;y3=MM-i+1; x4=j-1;y4=MM-i+1; fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]); hold on end end end for k=1:K PLK=PL(k,:); minPLK=min(PLK); pos=find(PLK==minPLK); m=pos(1); ROUT=ROUTES{k,m}; LENROUT=length(ROUT); Rx=ROUT; Ry=ROUT; for ii=1:LENROUT Rx(ii)=a*(mod(ROUT(ii),MM)-0.5); if Rx(ii)==-0.5 Rx(ii)=MM-0.5; end Ry(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM)); end plot(Rx,Ry) hold on end end function D=G2D(G) l=size(G,1); D=zeros(l*l,l*l); for i=1:l for j=1:l if G(i,j)==0 for m=1:l for n=1:l if G(m,n)==0 im=abs(i-m);jn=abs(j-n); if im+jn==1||(im==1&&jn==1) D((i-1)*l+j,(m-1)*l+n)=(im+jn)^0.5; end end end end end end end
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。