赞
踩
1.损失出现在最后,后面的层训练较快
2.数据在最底部:
底部的层训练较慢——>底部层一变化,所有的都得跟着改变——>最后的那些层需要重新学习多次——>导致收敛变慢 (这里的变化指的是不同batch的分布变化,而不是指底部参数变化导致顶层参数变化)
1.减少内部协变量转移
2.可能就是通过在每个小批量里加入噪音来控制模型复杂度
3.没必要跟丢弃法混合使用
1.批量归一化固定小批量中的均值和方差,然后学习出合适的偏移和缩放
2.可以加速收敛速度,但一般不改变模型精度
import torch from torch import nn from d2l import torch as d2l def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum): # 通过is_grad_enabled来判断当前模式是训练模式还是预测模式 if not torch.is_grad_enabled(): # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差 X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps) else: assert len(X.shape) in (2, 4) if len(X.shape) == 2: # 使用全连接层的情况,计算特征维上的均值和方差 mean = X.mean(dim=0) var = ((X - mean) ** 2).mean(dim=0) else: # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。 # 这里我们需要保持X的形状以便后面可以做广播运算 mean = X.mean(dim=(0, 2, 3), keepdim=True) var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True) # 训练模式下,用当前的均值和方差做标准化 X_hat = (X - mean) / torch.sqrt(var + eps) # 更新移动平均的均值和方差 moving_mean = momentum * moving_mean + (1.0 - momentum) * mean moving_var = momentum * moving_var + (1.0 - momentum) * var Y = gamma * X_hat + beta # 缩放和移位 return Y, moving_mean.data, moving_var.data
创建一个正确的BatchNorm层。
这个层将保持适当的参数:拉伸gamma和偏移beta,这两个参数将在训练过程中更新。 此外,我们的层将保存均值和方差的移动平均值,以便在模型预测期间随后使用。
class BatchNorm(nn.Module): # num_features:完全连接层的输出数量或卷积层的输出通道数。 # num_dims:2表示完全连接层,4表示卷积层 def __init__(self, num_features, num_dims): super().__init__() if num_dims == 2: shape = (1, num_features) else: shape = (1, num_features, 1, 1) # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0 self.gamma = nn.Parameter(torch.ones(shape)) self.beta = nn.Parameter(torch.zeros(shape)) # 非模型参数的变量初始化为0和1 self.moving_mean = torch.zeros(shape) self.moving_var = torch.ones(shape) def forward(self, X): # 如果X不在内存上,将moving_mean和moving_var # 复制到X所在显存上 if self.moving_mean.device != X.device: self.moving_mean = self.moving_mean.to(X.device) self.moving_var = self.moving_var.to(X.device) # 保存更新过的moving_mean和moving_var Y, self.moving_mean, self.moving_var = batch_norm( X, self.gamma, self.beta, self.moving_mean, self.moving_var, eps=1e-5, momentum=0.9) return Y
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
nn.Linear(84, 10))
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.263, train acc 0.902, test acc 0.822
16762.9 examples/sec on cuda:0
第一个批量规范化层中学到的拉伸参数gamma和偏移参数beta
net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))
(tensor([2.6694, 2.7241, 2.8893, 3.9388, 2.3296, 0.8152], device='cuda:0',
grad_fn=<ViewBackward0>),
tensor([-0.5535, -1.5517, 3.2003, -2.3361, -2.0526, -0.8012], device='cuda:0',
grad_fn=<ViewBackward0>))
可以直接使用深度学习框架中定义的BatchNorm。
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(), ##区别
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(), ##区别,BatchNorm前加nn
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
nn.Linear(84, 10))
通常高级API变体运行速度快得多,因为它的代码已编译为C++或CUDA,而我们的自定义代码由Python实现。
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.265, train acc 0.903, test acc 0.876
28625.9 examples/sec on cuda:0
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。