当前位置:   article > 正文

【技术预研】StarRocks官方文档浅析(3)_startrocks

startrocks

背景说明

基于starRocks官方文档,对其内容进行一定解析,方便大家理解和使用。
若无特殊标注,startRocks版本是3.2。
下面的章节和官方文档保持一致。

参考文档

产品简介 | StarRocks

StarRocks

StarRocks 是一款高性能分析型数据仓库,使用向量化、MPP 架构、CBO、智能物化视图、可实时更新的列式存储引擎等技术实现多维、实时、高并发的数据分析。StarRocks 既支持从各类实时和离线的数据源高效导入数据,也支持直接分析数据湖上各种格式的数据。StarRocks 兼容 MySQL 协议,可使用 MySQL 客户端和常用 BI 工具对接。同时 StarRocks 具备水平扩展,高可用、高可靠、易运维等特性。广泛应用于实时数仓、OLAP 报表、数据湖分析等场景。

内容说明
高性能分析型数据仓库相比于oltp,更适合olap
向量化基于CPU层级的优化(clickhouse有相关优化)
MPP 架构相比于hadoop架构更适合olap
CBO优化多表join的执行时,starRocks内部的执行先后顺序
智能物化视图用于实现单表的实时数据转换,类似clickhouse的物化视图
可实时更新的列式存储引擎可支持实时update
兼容 MySQL可使用mysql相关语法和client工具

查询加速

CBO统计信息

采用 Cascades 框架。简单描述,就是判断预估来优化重型SQL的执行策略。具体内容,可以自行了解。
CBO 统计信息 | StarRocks

同步物化视图

同步物化视图和异步物化视图比较。
从下图比较中可以看到,同步物化视图的功能比较简单,基本上是两个场景,分别是map映射和简单聚合。
map映射:实现字段间转换,例如时间戳转换为日期,string转int
简单聚合:计数器类的函数,单表groupby维度信息,计算sum、max、min等可以直接比较的函数

异步物化视图同步物化视图(Rollup)
本质物理表,进行预计算(提升查询效率,先匹配是否命中)基表的索引
处理方式定时或者手动计算实时计算
风险点多张大表关联是否存在执行失败的风险,而且依赖血缘关系,没有外部调度的话,时效性如何确认对单张表做多个同步物化视图,会影响性能(瞬时并发量大)建议:1对1
使用场景理论上可以适用于全部场景,但在单表简单处理上没有同步物化视图效率高
  • map映射:实现字段间转换
  • 简单聚合:计数器类的函数
    |
    | 单表聚合 | 是 | 仅部分聚合函数 |
    | 多表关联 | 是 | 否 |
    | 查询改写 | 是 | 是 |
    | 刷新策略 |
  • 异步刷新
  • 手动刷新
    | 导入同步刷新 |
    | 基表 | 支持多表构建。基表可以来自:
  • Default Catalog
  • External Catalog(v2.5)
  • 已有异步物化视图(v2.5)
  • 已有视图(v3.1)
    | 仅支持基于 Default Catalog 的单表构建 |

同步物化视图支持的函数:

原始查询聚合函数同步物化视图构建聚合函数
sumsum
minmin
maxmax
countcount
bitmap_union, bitmap_union_count, count(distinct)bitmap_union
hll_raw_agg, hll_union_agg, ndv, approx_count_distincthll_union

异步物化视图

和同步物化视图进行比较,比较内容参考从上。

Colocate Join

就是多张表关联,把相同的关联键作为分桶键,这样相关的数据就会出现在相同节点。
能够减少数据多节点分布时 Join 操作引起的数据移动和网络传输,从而提高查询性能。

使用 Lateral Join 实现列转行

实现列拆分,转换为多行数据。

mysql> select * from lateral_test2;

+------+-------+------+
| v1   | v2    | v3   |
+------+-------+------+
|    1 | 1,2,3 | 1,2  |
|    2 | 1,3   | 1,3  |
+------+-------+------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
-- 对单行数据进行 Unnest 操作。
mysql> select v1, unnest from lateral_test2, unnest(split(v2, ","));

+------+--------+
| v1   | unnest |
+------+--------+
|    1 | 1      |
|    1 | 2      |
|    1 | 3      |
|    2 | 1      |
|    2 | 3      |
+------+--------+

-- 对多行数据进行 Unnest 操作,需要指定别名。
mysql> select v1, t1.unnest as v2, t2.unnest as v3 from lateral_test2, unnest(split(v2, ",")) t1, unnest(split(v3, ",")) t2;

+------+------+------+
| v1   | v2   | v3   |
+------+------+------+
|    1 | 1    | 1    |
|    1 | 1    | 2    |
|    1 | 2    | 1    |
|    1 | 2    | 2    |
|    1 | 3    | 1    |
|    1 | 3    | 2    |
|    2 | 1    | 1    |
|    2 | 1    | 3    |
|    2 | 3    | 1    |
|    2 | 3    | 3    |
+------+------+------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

Query Cache

2.5版本以后上线的功能,需要配置FE、BE参数启动。查询的执行引擎为 Pipeline。
相当于缓存该表的之前的查询内容。
之后的查询,如果有类似的,可以直接获取,提升查询效率。
如果判断是否类似,需要通过执行计划。

索引

除增长的排序键和前缀索引,还提供bitmap和bloom filter两种索引。
前者适合基数比较低的列(就是枚举值比较少的,例如订单状态),后者适合基数比较高的列(例如店铺id)。
Bloom filter是判断文件中是否包含对应的数据,为了保证不缺失数据,存在下面说的假阳性。
Bloom filter 索引有一定的误判率,也称为假阳性概率 (False Positive Probability),即判断某行中包含目标数据,而实际上该行并不包含目标数据的概率。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/468958
推荐阅读
相关标签
  

闽ICP备14008679号