赞
踩
编者按: 检索增强生成(RAG)系统最近备受关注,ChatGPT的火爆更让这类系统成为广泛讨论的热点。我们今天为大家带来的这篇文章,作者Matt Ambrogi的核心观点是:构建一个基本可用的RAG系统非常简单,但要使其达到实际生产可用的程度则异常困难,需要我们投入大量精力。
为此,作者详细介绍了10种策略,包括清洗数据、尝试不同索引类型、优化分块策略、使用 Base Prompt、使用元数据过滤、使用查询路由、研究重排序、使用查询转换、微调嵌入模型、使用 LLM 生态相关工具等,这些策略都可能不同程度地提高RAG系统的性能。
总体而言,本文对于RAG系统开发者极具参考价值,值得仔细阅读和实践。
作者 | Matt Ambrogi
编译 | 岳扬
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。