当前位置:   article > 正文

数据结构之单链表(赋源码)

数据结构之单链表(赋源码)

数据结构之单链表

线性表

线性表的顺序存储结构,有着较大的缺陷

  • 插入和删除操作需要移动大量元素。会耗费很多时间
  • 增容需要申请空间,拷贝数据,释放旧空间。会有不小的消耗
  • 即使是使用合理的增容策略,实际上还会浪费许多用不上的空间。如我只需要101个空间存放数据,而100进行2倍增容后有200个空间,这样实际上浪费了99块空间。

线性表的链式存储结构就可以解决这些问题,首先链式存储结构并不需要增容,而是使用多少数据申请多少空间,这一点就避免了时间和空间的浪费。

顺序存储结构和链式存储结构

存储方式
  • 顺序存储结构,使用一段连续的空间依次存储数据
  • 链式存储结构,使用一个个存储单元存放数据
时间性能
  • 插入和删除

    • 顺序存储结构,O(N)

    • 链式存储结构,O(1)

空间性能
  • 顺序存储结构,需要预分配空间,给小了不够用,给打了浪费
  • 链式存储结构,不需要预分配空间,只要有新的元素插入才会开辟内存单元

使用场景

具体在什么场景使用不同的线性表存储结构呢?

  • 若线性表需要频繁的查找,很少进行插入和删除操作时,可以采用顺序存储结构。

  • 若线性表中的元素个数变化较大或不知道有多大时,可以采用链式存储结构。

    • 单链表在插入和删除不需要移动元素,只需改变指针的指向即可。

单链表

概念:单链表是在物理存储结构上不连续,逻辑结构上连续的线性表。它是通过指针链接,就像火车的一节一节车厢一样通过挂钩链接在一起,车厢就是单链表的一个一个节点,里面用来存放数据。

而在单链表里“车厢”内有些什么的呢?单链表是一种数据结构“车厢”里肯定存放在数据,而单链表又是通过指针链接在以起,就像车厢的钩子一样链接,它在物理存储结构上不是连续的,所以“车厢”里还有一个指针变量用来存放下一节“车厢”的地址。

在这里插入图片描述

typedef int SLNodeDatatpye;
struct SListNode
{
	SLNodeDatatpye data;//存放数据
	struct SListNode* next;//存放单链表类型的指针
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

存放的数据类型:单链表不会只用来存放整形数据,这里只是以整形举例,所以需要对类型重命名,方便对后面的类型进行修改,需要修改数据类型的只需要动动 typedef int SLNodeDatatpye;,这串代码。

在这里插入图片描述

功能实现

typedef int SLNodeDatatpye;
struct SListNode
{
	SLNodeDatatpye data;
	struct SListNode* next;
};
typedef struct SListNode SL;

//创建节点
SL* SLBuyNode(SLNodeDatatpye x);

//打印
void SLPrint(SL** pphead);

//头插
void SLPushFront(SL** pphead, SLNodeDatatpye x);
//尾插
void SLPushBack(SL** pphead, SLNodeDatatpye x);

//头删
void SLPopFront(SL** pphead);
//尾删
void SLPopBack(SL** pphead);

//查找,返回地址
SL* SLFind(SL** pphead, SLNodeDatatpye x);

//指定位置插入(之前)
void SLInsert(SL** pphead, SLNodeDatatpye x, SL* pos);

//删除pos之后的节点
void SLEraseBack(SL* pos);
//删除pos节点
void SLErase(SL** pphead, SL* pos);

//销毁链表
void SLDestory(SL** pphead);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

创建节点和打印

实现单链表的功能第一步需要为它创建节点以用来存放数据。实现打印功能,将链表的数据打印出来方便更好的观查链表存储数据的情况,配合着调试功能可以更加完善的查找,观测在实现完一个功能,它执行的结果是否与预期相符合,若发生错误,又可以借助调试功能更好、更快的查找bug。

//创建节点
SL* SLBuyNode(SLNodeDatatpye x)
{
	SL* newnode = (SL*)malloc(sizeof(SL));
	if (newnode == NULL)
	{
		perror("malloc");
		return;
	}
	newnode->data = x;
	newnode->next = NULL;
	return newnode;//忘记返回newnode的地址了
}
//打印
void SLPrint(SL** phead)
{
	//assert(phead);
	SL* pcur = phead;
	while (pcur)//pcur != NULL
	{
		printf("%d->", pcur->data);
		pcur = pcur->next;
	}
	printf("NULL\n");
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

创建节点很容易理解,一个单链表的节点用来存放数据和下一个节点的地址,在创建节点时使用malloc函数开辟一个内存单元,然后判断开辟空间是否成功,接着将传递过来的参数放在 newnode->data = x;里。

newnode->next = NULL;置为空即可,这只是一个节点没有与其余节点有任何关联,借助插入函数来实现像火车一样一节一节车厢链接在一起的效果。

打印单链表时应注意:

循环体,单链表的循环通过next指针来实现,结束条件是最后一个节点的next指针为空。

pcur = pcur->next;,通过 pcur->next,赋值给 pcur,来来遍历每一个节点。重述:将pcur的下一个节点的地址赋给pcur,此时pcur就等于下一个节点,直达循环到最后一个节点,在最后一个节点data == 4 ,pcur = pcur->next;,为空指针将其赋给 pcur,此时它为空指针,跳出循环。

在这里插入图片描述

查找数据

查找数据,为什么传递二级指针,这里是为了保持函数接口的一致性,后续实现的插入、删除、销毁操作都需要传递二级指针,同时也是减少对函数的混淆,当函数量较多时,这个函数传一级指针,另一个函数传递二级指针,四处分散,容易让使用者看了傻眼~。

//查找,返回地址
SL* SLFind(SL** pphead, SLNodeDatatpye x)
{
	assert(*pphead && pphead);
	SL* pcur = *pphead;
	while (pcur)
	{
		if (pcur->data == x)
		{
			return pcur;
		}
		pcur = pcur->next;
	}
	return NULL;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

查找数据的基本的逻辑与打印类似,都需要使用循环遍历链表, 循环内增加了一个条件判断,用于判断这个节点的数据是否等于形参x,相等就说明找到了 “找到了”,将当前节点的地址返回即可,若跳出循环后还是没有找到对应的节点,将返回NULL,空指针。

assert断言是防止,传递过来的链表的节点是空指针,在函数内对进行解引用导致程序报错。

插入数据

在插入数据时需要考虑,插入的数据会对影响那些节点

特别注意的一点,插入数据会对单链表进行改变,在传递参数的时候需要对取pliat的地址,而plist又是一个指针变量,所以函数需要使用二级指针来接收。

节点函数参数
*plist(第一个节点)**pphead
plist(指向第一个节点的指针)*pphead
&plist(指向第一个节点的指针的地址)pphead
void test()
{
	SL* plist = NULL;
	SLPushFront(&plist, 1);
	SLPushFront(&plist, 2);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
//头插
void SLPushFront(SL** pphead, SLNodeDatatpye x)
{
	assert(pphead);
	SL* newnode = SLBuyNode(x);
	newnode->next = *pphead;
	*pphead = newnode;
}
//尾插
void SLPushBack(SL** pphead, SLNodeDatatpye x)
{
	assert(pphead);
	if (*pphead == NULL)
	{
		*pphead = SLBuyNode(x);
	}
	else
	{
		SL* pcur = *pphead;
		while (pcur->next)
		{
			pcur = pcur->next;
		}
		pcur->next = SLBuyNode(x);
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

需要对头插、尾插分两种场景,一是没有节点,传递过来的是空链表,二是有节点,传递的不是空链表。

实现头插、尾插先认为传递的不是一个空链表,基于此来实现,然后对空链表的情况做出判断和处理。这样做会更容易上手,先实现最主要的功能,然后再检擦其完整性。

assert断言是防止,传递过来的链表的节点是空指针,在函数内对进行解引用导致程序报错。

头插:

  1. 需要创建一个节点,SL* newnode = SLBuyNode(x);,使用上述的函数创建一个新节点
  2. 将其放在链表的第一个位置,newnode->next = *pphead;

在这里插入图片描述

  1. 将新插入的节点置为新的头(让*pphead指向新的节点),*pphead = newnode;

在这里插入图片描述

千万别忘了,需要将*pphead置为新的头,否则此时,它指向的是下一个节点的位置,会影响到后续对链表的操作。

**最后取特殊情况:**当链表为空时,上述头插是否支持。很明显,我们将 *pphead == NULL的情况带入头插函数,SL* newnode = SLBuyNode(x);,第一步正常创建节点;newnode->next = *pphead;,第二步正常,由于只有一个节点所以 newnode->next == NULL,没有问题;*pphead = newnode;,第三步将*pphead置为新的头,这步没有问题,也不存在对空指针解引用的情况。

最后通过运行代码观测:

在这里插入图片描述

尾插:

尾插同理,也是将链表默认不为空的情况实现。

  • 想要进行尾插首先得有一个指针指向最后一个节点,然后将创建的新节点插入。
  • 定义一个指针pcur,使用循环遍历到最后一个节点。
  • 跳出循环,完成最后一步尾插代码~,pcur->next = SLBuyNode(x);

当链表为空时,这不就是头插吗?!,这样我们使用一个if语句判断*pphead是否为空,为空就调用头插函数,不为空就循环到最后一个节点,然后插入~

指定位置插入:

指定位置插入实际上与尾插代码差别不大,就改变了跳出while循环的的条件。

//指定位置插入(之前)
void SLInsert(SL** pphead, SLNodeDatatpye x, SL* pos)
{
	assert(pphead);
	assert(pos);
	SL* newnode = SLBuyNode(x);
	SL* pcur = *pphead;
	if (*pphead == pos)//这不就是头插吗?
	{
		newnode->next = pos;
		*pphead = newnode;
	}
	else
	{
		while (pcur->next != pos)
		{
			pcur = pcur->next;
		}
		pcur->next = newnode;
		newnode->next = pos;

	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

首先想要实现指定位置插入,传入的链表和pos不可能为空使用一个assert断言进行判断。

同样,将指定位置插入分为两种情况,一是 *pphead == pos ,二是 *pphead != pos

这里可以将pos看似空指针(NULL),那指定位置插入(之前)不就是尾插吗?细节上不就是在 pos这个指针上,处理它也很简单。

在指针pos之前插入数据会影响到的节点:pcur pos ,在pcur和pos之前插入newnode,pcur newnode pos

在这里插入图片描述

这里需要将pcur和pos之间的”线“断开,然后使 newnode->next = pos;newnode->next = pos;这不就完成了插入操作。
在这里插入图片描述

删除数据

在删除数据时需要考虑,删除这个节点会影响到那些节点

删除数据需要注意的是 *pphead 和 pphead不能为空,删除数据也不可能删除空,函数里对空指针解引用也会报错。


头删:

头删的逻辑简单:一,保存*pphead之后的节点 SL* pcur = (*pphead)->next;,二、然后释放第一个节点 free(*pphead);,三、最后将 pcur 赋给 *pphead,更新头节点的位置。

尾删:

尾删,需要考虑最后一个节点,和最后一个节点之前的节点,所以需要使用pdst指针指向倒数第二个节点,以及pcur指针指向最后一个节点。在循环时以 pcur->next != NULL为结束条件,在循环体内要保证 pdst指针在pcur指针后,这种做法保证了,pdst指针在pcur指针后,而pcur指针指向的也是最后一个节点。

SL* pdst = *pphead; SL* pcur = pdst->next;
在这里插入图片描述

在这里插入图片描述

//头删
void SLPopFront(SL** pphead)
{
	assert(*pphead && pphead);
	SL* pcur = (*pphead)->next;
	free(*pphead);
	*pphead = pcur;
}
//尾删
void SLPopBack(SL** pphead)
{
	assert(*pphead && pphead);
	if ((*pphead)->next == NULL)
	{
		free(*pphead);
		*pphead = NULL;
	}
	else
	{
		SL* pdst = *pphead;
		SL* pcur = pdst->next;
		while (pcur->next)
		{
			pcur = pcur->next;
			pdst = pdst->next;
		}
		pdst->next = NULL;
		free(pcur);
		pcur = NULL;
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

指定位置删除数据:

指定位置删除数据与指定位置插入数据类似,与尾删也比较类似。首先想要指定位置删除数据, *pphead和pphead以及pos都不可能为空,否则这还删什么?传递过来的东西都是空的。

删除指定位置的数据时需要从它会影响那些节点,pos会影响到 pcur pos pos->next
在这里插入图片描述

*pphead 刚好等于pos 的情况,和 *pphead != pos的情况。当 *pphead != pos时:

  • 需要使用循环将定义的pcur指针指向pos之前的节点,所以结束条件是 pcur->next != pos

  • 当跳出循环时开始销毁,在销毁前需要将 pos->next;赋给 pcur->next,否则直接删除pos节点,无法将pso的后继节点与它前驱节点链接,链表断开了~

    在这里插入图片描述

  • 讲pcur与pos->next链接上后,释放pos即可。

当*pphead == pos时,pos指向的时第一个节点的位置,此时不就是头删吗,这是直接调用头删函数就完成了。

//指定位置删除
void SLErase(SL** pphead, SL* pos)
{
	assert(*pphead && pphead);
	assert(pos);
    SL* pcur = *pphead;
	if (*pphead == pos)//头删
	{
		//free(*pphead);
		//*pphead = NULL;
		SLPopFront(pphead);
	}
	else
	{
		while (pcur->next != pos)
		{
			pcur = pcur->next;
		}
		pcur->next = pos->next;
		free(pos);
		pos = NULL;
	}
}
//删除pos之后的节点
void SLEraseBack(SL* pos)
{
	assert(pos->next && pos);
	//  pos pos->next pos->next-->next
	SL* del = pos->next;
	//  pos del del->next
	pos->next = del->next;
	free(del);
	del = NULL;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

删除pos之后的节点逻辑简单与删除pos节点类似。第一步同样是需要考虑,删除pos之后·的节点会影响到那些节点。

删除pos之后的节点会影响 :pos pos->next pos->next-->next,这三个节点,所以传递过来的 pos 和 pos->next不能为空否则就是对空指针解引用,导致程序异常。

在删除时,需要注意删除和将pos 与 pos->next–>next链接的顺序, 先链接,在删除

  • 将pos->next保存,赋给del指针
  • 将pos与 del->next链接
  • 释放del指针

销毁链表

销毁链表需要使用free对每一个节点进行释放。
在这里插入图片描述

//销毁链表
void SLDestory(SL** pphead)
{
	//循环销毁所有节点
	assert(*pphead && pphead);
	SL* pcur = *pphead;
	while (pcur)
	{
		SL* next = pcur->next;
		free(pcur);
		pcur = next;
	}
	*pphead = NULL;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

销毁链表,需要对每一个节点进行释放,而只使用一个指针pcur,释放当前的节点就找不到下一个节点了,这里需要使用两个指针。

一个指针用来释放(pcur),一个指针用来指向待释放之后的节点(next)。

在这里插入图片描述

当释放完pcur节点后,更新pcur的位置 pcur = next;,用来释放下一个节点,next指针也需要更新用来指向下一个节点 next = pcur->next;,用来对pcur进行更新。直到pcur指向空指针时释放完所有节点,跳出循环。而 *pphead,还没有置为空,这时候时野指针,最后一步 *pphead = NULL;

源码

SListNode.h

#pragma once

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>


typedef int SLNodeDatatpye;
struct SListNode
{
	SLNodeDatatpye data;
	struct SListNode* next;
};
typedef struct SListNode SL;

//创建节点
SL* SLBuyNode(SLNodeDatatpye x);

//打印
void SLPrint(SL* phead);

//头插
void SLPushFront(SL** pphead, SLNodeDatatpye x);
//尾插
void SLPushBack(SL** pphead, SLNodeDatatpye x);

//头删
void SLPopFront(SL** pphead);
//尾删
void SLPopBack(SL** pphead);

//查找,返回地址
SL* SLFind(SL** pphead, SLNodeDatatpye x);//不需要二级指针,保证接口一直,所以传递二级

//指定位置插入(之前)
void SLInsert(SL** pphead, SLNodeDatatpye x, SL* pos);

//删除pos之后的节点
void SLEraseBack(SL* pos);
//删除pos节点
void SLErase(SL** pphead, SL* pos);

//销毁链表
void SLDestory(SL** pphead);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

SListNode.c

#define _CRT_SECURE_NO_WARNINGS

#include "SListNode.h"
//创建节点
SL* SLBuyNode(SLNodeDatatpye x)
{
	SL* newnode = (SL*)malloc(sizeof(SL));
	if (newnode == NULL)
	{
		perror("malloc");
		return;
	}
	newnode->data = x;
	newnode->next = NULL;
	return newnode;
}

//打印
void SLPrint(SL* phead)
{
	//assert(phead);
	SL* pcur = phead;
	while (pcur)
	{
		printf("%d->", pcur->data);
		pcur = pcur->next;
	}
	printf("NULL\n");
}

//头插
void SLPushFront(SL** pphead, SLNodeDatatpye x)
{
	assert(pphead);
		SL* newnode = SLBuyNode(x);
		newnode->next = *pphead;
		*pphead = newnode;
}
//尾插
void SLPushBack(SL** pphead, SLNodeDatatpye x)
{
	assert(pphead);
	if (*pphead == NULL)
	{
		*pphead = SLBuyNode(x);
	}
	else
	{
		SL* pcur = *pphead;
		while (pcur->next)
		{
			pcur = pcur->next;
		}
		pcur->next = SLBuyNode(x);
	}
}
//头删
void SLPopFront(SL** pphead)
{
	assert(*pphead && pphead);
	SL* pcur = (*pphead)->next;
	free(*pphead);
	*pphead = pcur;
}
//尾删
void SLPopBack(SL** pphead)
{
	assert(*pphead && pphead);
	if ((*pphead)->next == NULL)
	{
		free(*pphead);
		*pphead = NULL;
	}
	else
	{
		SL* pdst = *pphead;
		SL* pcur = pdst->next;
		while (pcur->next)
		{
			pcur = pcur->next;
			pdst = pdst->next;
		}
		pdst->next = NULL;
		free(pcur);
		pcur = NULL;
	}
}
//查找,返回地址
SL* SLFind(SL** pphead, SLNodeDatatpye x)
{
	assert(*pphead && pphead);
	SL* pcur = *pphead;
	while (pcur)
	{
		if (pcur->data == x)
		{
			return pcur;
		}
		pcur = pcur->next;
	}
	return NULL;
}
//指定位置插入(之前)
void SLInsert(SL** pphead, SLNodeDatatpye x, SL* pos)
{
	assert(pphead);
	assert(pos);
	SL* newnode = SLBuyNode(x);
	SL* pcur = *pphead;
	if (*pphead == pos)
	{
		newnode->next = pos;
		*pphead = newnode;
	}
	else
	{
		while (pcur->next != pos)
		{
			pcur = pcur->next;
		}
		pcur->next = newnode;
		newnode->next = pos;

	}
}
//指定位置删除
void SLErase(SL** pphead, SL* pos)
{
	assert(*pphead && pphead);
	assert(pos);
	if (*pphead == pos)//头删
	{
		//free(*pphead);
		//*pphead = NULL;
		SLPopFront(pphead);
	}
	else
	{
		SL* pcur = *pphead;
		while (pcur->next != pos)
		{
			pcur = pcur->next;
		}
		pcur->next = pos->next;
		free(pos);
		pos = NULL;
	}
}
//删除pos之后的节点
void SLEraseBack(SL* pos)
{
	assert(pos->next && pos);

	//  pos pos->next pos->next-->next
	SL* del = pos->next;
	//  pos del del->next
	pos->next = del->next;
	free(del);
	del = NULL;
}

//销毁链表
void SLDestory(SL** pphead)
{
	assert(*pphead && pphead);

	SL* pcur = *pphead;
	while (pcur)
	{
		SL* next = pcur->next;
		free(pcur);
		pcur = next;
	}
	*pphead = NULL;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/899507
推荐阅读
相关标签
  

闽ICP备14008679号