赞
踩
最新Jvm面试题总结及答案【附答案解析】Jvm面试题及答案2021,Jvm面试题最新面试题,Jvm面试题新答案已经全部更新完了,有些答案是自己总结的,也有些答案是在网上搜集整理的。这些答案难免会存在一些错误,仅供大家参考。如果发现错误还望大家多多包涵,不吝赐教,谢谢~
如果不背 Jvm面试题的答案,肯定面试会挂!
常见的 GC 日志开启参数包括:
1、 -Xloggc:filename,指定日志文件路径
2、 -XX:+PrintGC,打印 GC 基本信息
3、 -XX:+PrintGCDetails,打印 GC 详细信息
4、 -XX:+PrintGCTimeStamps,打印 GC 时间戳
5、 -XX:+PrintGCDateStamps,打印 GC 日期与时间
6、 -XX:+PrintHeapAtGC,打印 GC 前后的堆、方法区、元空间可用容量变化
7、 -XX:+PrintTenuringDistribution,打印熬过收集后剩余对象的年龄分布信息,有助于 MaxTenuringThreshold 参数调优设置
8、 -XX:+PrintAdaptiveSizePolicy,打印收集器自动设置堆空间各分代区域大小、收集目标等自动调节的相关信息
9、 -XX:+PrintGCApplicationConcurrentTime,打印 GC 过程中用户线程并发时间
10、 -XX:+PrintGCApplicationStoppedTime,打印 GC 过程中用户线程停顿时间
11、 -XX:+HeapDumpOnOutOfMemoryError,堆 oom 时自动 dump
12、 -XX:HeapDumpPath,堆 oom 时 dump 文件路径
Java 9 JVM 日志模块进行了重构,参数格式发生变化,这个需要知道。
GC 日志输出的格式,会随着上面的参数不同而发生变化。关注各个分代的内存使用情况、垃圾回收次数、垃圾回收的原因、垃圾回收占用的时间、吞吐量、用户线程停顿时间。
借助工具可视化工具可以更方便的分析,在线工具 GCeasy;离线版可以使用 GCViewer。
如果现场环境不允许,可以使用 JDK 自带的 jstat 工具监控观察 GC 情况。
Parallel Scavenge 收集器也是一个新生代垃圾收集器,同样使用复制算法,也是一个多线程的垃圾收集器, 它重点关注的是程序达到一个可控制的吞吐量(Thoughput, CPU 用于运行用户代码的时间/CPU 总消耗时间,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间)),高吞吐量可以最高效率地利用 CPU 时间,尽快地完成程序的运算任务,主要适用于在后台运算而不需要太多交互的任务。自适应调节策略也是 ParallelScavenge 收集器与 ParNew 收集器的一个重要区别。
Bootstrap ClassLoader(启动类加载器) Extention ClassLoader(扩展类加载器) App ClassLoader(应用类加载器)
1、 jps -v 可以查看 jvm 进程显示指定的参数
2、 使用 -XX:+PrintFlagsFinal 可以看到 JVM 所有参数的值
3、 jinfo 可以实时查看和调整虚拟机各项参数
双亲委派机制的意思是除了顶层的启动类加载器以外,其余的类加载器,在加载之前,都会委派给它的父加载器进行加载。这样一层层向上传递,直到祖先们都无法胜任,它才会真正的加载。
内存溢出 OutOfMemory,指程序在申请内存时,没有足够的内存空间供其使用。
内存泄露 Memory Leak,指程序在申请内存后,无法释放已申请的内存空间,内存泄漏最终将导致内存溢出。
1、 强引用,就是普通的对象引用关系,如 String s = new String("ConstXiong")
2、 软引用,用于维护一些可有可无的对象。只有在内存不足时,系统则会回收软引用对象,如果回收了软引用对象之后仍然没有足够的内存,才会抛出内存溢出异常。SoftReference 实现
3、 弱引用,相比软引用来说,要更加无用一些,它拥有更短的生命周期,当 JVM 进行垃圾回收时,无论内存是否充足,都会回收被弱引用关联的对象。WeakReference 实现
4、 虚引用是一种形同虚设的引用,在现实场景中用的不是很多,它主要用来跟踪对象被垃圾回收的活动。PhantomReference 实现
Java 语言中一个显著的特点就是引入了垃圾回收机制,使 C++ 程序员最头疼的内存管理的问题迎刃而解,它使得 Java 程序员在编写程序的时候不再需要考虑内存管理。由于有个垃圾回收机制,Java 中的对象不再有“作用域”的概念,只有对象的引用才有"作用域"。垃圾回收可以有效的防止内存泄露,有效的使用可以使用的内存。垃圾回收器通常是作为一个单独的低级别的线程运行,不可预知的情况下对内存堆中已经死亡的或者长时间没有使用的对象进行清楚和回收,程序员不能实时的调用垃圾回收器对某个对象或所有对象进行垃圾回收。
回收机制有分代复制垃圾回收和标记垃圾回收,增量垃圾回收。
分为新生代和老年代,新生代默认占总空间的 1/3,老年代默认占 2/3。
新生代使用复制算法,有 3 个分区:Eden、To Survivor、From Survivor,它们的默认占比是 8:1:1。
当新生代中的 Eden 区内存不足时,就会触发 Minor GC,过程如下:
1、 在 Eden 区执行了第一次 GC 之后,存活的对象会被移动到其中一个 Survivor 分区;
2、 Eden 区再次 GC,这时会采用复制算法,将 Eden 和 from 区一起清理,存活的对象会被复制到 to 区;
3、 移动一次,对象年龄加 1,对象年龄大于一定阀值会直接移动到老年代
4、 Survivor 区相同年龄所有对象大小的总和 (Survivor 区内存大小 * 这个目标使用率)时,大于或等于该年龄的对象直接进入老年代。其中这个使用率通过 -XX:TargetSurvivorRatio 指定,默认为 50%
5、 Survivor 区内存不足会发生担保分配
6、 超过指定大小的对象可以直接进入老年代
Major GC,指的是老年代的垃圾清理,但并未找到明确说明何时在进行Major GC
FullGC,整个堆的垃圾收集,触发条件:
1、 每次晋升到老年代的对象平均大小>老年代剩余空间
2、 MinorGC后存活的对象超过了老年代剩余空间
3、 元空间不足
4、 System.gc() 可能会引起
5、 CMS GC异常,promotion failed:MinorGC时,survivor空间放不下,对象只能放入老年代,而老年代也放不下造成;concurrent mode failure:GC时,同时有对象要放入老年代,而老年代空间不足造成
6、 堆内存分配很大的对象
Java 堆从 GC 的角度还可以细分为: 新生代(Eden 区、 From Survivor 区和 To Survivor 区)和老年代。
新生代
是用来存放新生的对象。一般占据堆的 1/3 空间。由于频繁创建对象,所以新生代会频繁触发MinorGC 进行垃圾回收。新生代又分为 Eden区、 ServivorFrom、 ServivorTo 三个区。
Eden 区
Java 新对象的出生地(如果新创建的对象占用内存很大,则直接分配到老年代)。当 Eden 区内存不够的时候就会触发 MinorGC,对新生代区进行一次垃圾回收。
ServivorFrom
上一次 GC 的幸存者,作为这一次 GC 的被扫描者。
ServivorTo
保留了一次 MinorGC 过程中的幸存者。
MinorGC 的过程(复制->清空->互换)
MinorGC 采用复制算法。
eden、 servicorFrom 复制到 ServicorTo,年龄+1
首先,把 Eden 和 ServivorFrom 区域中存活的对象复制到 ServicorTo 区域(如果有对象的年龄以及达到了老年的标准,则赋值到老年代区),同时把这些对象的年龄+1(如果 ServicorTo 不够位置了就放到老年区);
清空 eden、 servicorFrom
然后,清空 Eden 和 ServicorFrom 中的对象;
ServicorTo 和 ServicorFrom 互换
最后, ServicorTo 和 ServicorFrom 互换,原 ServicorTo 成为下一次 GC 时的 ServicorFrom区。
JDK11 中加入的具有实验性质的低延迟垃圾收集器,目标是尽可能在不影响吞吐量的前提下,实现在任意堆内存大小都可以把停顿时间限制在 10ms 以内的低延迟。
基于 Region 内存布局,不设分代,使用了读屏障、染色指针和内存多重映射等技术实现可并发的标记-整理,以低延迟为首要目标。
ZGC 的 Region 具有动态性,是动态创建和销毁的,并且容量大小也是动态变化的。
STW并不会只发生在内存回收的时候。现在程序员这么卷,碰到几次safepoint的问题几率也是比较大的。
当发生GC时,用户线程必须全部停下来,才可以进行垃圾回收,这个状态我们可以认为JVM是安全的(safe),整个堆的状态是稳定的。
如果在GC前,有线程迟迟进入不了safepoint,那么整个JVM都在等待这个阻塞的线程,造成了整体GC的时间变长。
jps:
用来显示本地的 Java 进程,可以查看本地运行着几个 Java 程序,并显示他们的进程号。 命令格式:jps
jinfo:
运行环境参数:Java System 属性和 JVM 命令行参数,Java class path 等信息。 命令格式:jinfo 进程 pid
jstat:
监视虚拟机各种运行状态信息的命令行工具。 命令格式:jstat -gc 123 250 20
jstack:
可以观察到 JVM 中当前所有线程的运行情况和线程当前状态。 命令格式:jstack 进程 pid
jmap:
观察运行中的 JVM 物理内存的占用情况(如:产生哪些对象,及其数量)。 命令格式:jmap [option] pid
Concurrent mark sweep(CMS)收集器是一种年老代垃圾收集器,其最主要目标是获取最短垃圾回收停顿时间, 和其他年老代使用标记-整理算法不同,它使用多线程的标记-清除算法。最短的垃圾收集停顿时间可以为交互比较高的程序提高用户体验。CMS 工作机制相比其他的垃圾收集器来说更复杂。整个过程分为以下 4 个阶段:
初始标记
只是标记一下 GC Roots 能直接关联的对象,速度很快,仍然需要暂停所有的工作线程。
并发标记
进行 GC Roots 跟踪的过程,和用户线程一起工作,不需要暂停工作线程。
重新标记
为了修正在并发标记期间,因用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,仍然需要暂停所有的工作线程。
并发清除
清除 GC Roots 不可达对象,和用户线程一起工作,不需要暂停工作线程。由于耗时最长的并发标记和并发清除过程中,垃圾收集线程可以和用户现在一起并发工作, 所以总体上来看CMS 收集器的内存回收和用户线程是一起并发地执行。
不是。当新生代内存不够时,老年代分配担保。而大对象则是直接在老年代分配。
标记-清除算法
分为标记和清除阶段,首先从每个 GC Roots 出发依次标记有引用关系的对象,最后清除没有标记的对象。
执行效率不稳定,如果堆包含大量对象且大部分需要回收,必须进行大量标记清除,导致效率随对象数量增长而降低。
存在内存空间碎片化问题,会产生大量不连续的内存碎片,导致以后需要分配大对象时容易触发 Full GC。
标记-复制算法
为了解决内存碎片问题,将可用内存按容量划分为大小相等的两块,每次只使用其中一块。当使用的这块空间用完了,就将存活对象复制到另一块,再把已使用过的内存空间一次清理掉。主要用于进行新生代。
实现简单、运行高效,解决了内存碎片问题。代价是可用内存缩小为原来的一半,浪费空间。
HotSpot 把新生代划分为一块较大的 Eden 和两块较小的 Survivor,每次分配内存只使用 Eden 和其中一块 Survivor。垃圾收集时将 Eden 和 Survivor 中仍然存活的对象一次性复制到另一块 Survivor 上,然后直接清理掉 Eden 和已用过的那块 Survivor。HotSpot 默认Eden 和 Survivor 的大小比例是 8:1,即每次新生代中可用空间为整个新生代的 90%。
标记-整理算法
标记-复制算法在对象存活率高时要进行较多复制操作,效率低。如果不想浪费空间,就需要有额外空间分配担保,应对被使用内存中所有对象都存活的极端情况,所以老年代一般不使用此算法。
老年代使用标记-整理算法,标记过程与标记-清除算法一样,但不直接清理可回收对象,而是让所有存活对象都向内存空间一端移动,然后清理掉边界以外的内存。
标记-清除与标记-整理的差异在于前者是一种非移动式算法而后者是移动式的。如果移动存活对象,尤其是在老年代这种每次回收都有大量对象存活的区域,是一种极为负重的操作,而且移动必须全程暂停用户线程。如果不移动对象就会导致空间碎片问题,只能依赖更复杂的内存分配器和访问器解决。
进程占用的内存,可以使用top命令,看RES段占用的值。如果这个值大大超出我们设定的最大堆内存,则证明堆外内存占用了很大的区域。
使用gdb可以将物理内存dump下来,通常能看到里面的内容。更加复杂的分析可以使用perf工具,或者谷歌开源的gperftools。那些申请内存最多的native函数,很容易就可以找到。
当操作系统内存不足的时候,会将部分数据写入到SWAP交换分中,但是SWAP的性能是比较低的。如果应用的访问量较大,需要频繁申请和销毁内存,就容易发生卡顿。一般高并发场景下,会禁用SWAP。
设定堆内存大小
1、 -Xmx:堆内存最大限制。设定新生代大小。新生代不宜太小,否则会有大量对象涌入老年代
2、 -XX:NewSize:新生代大小
3、 -XX:NewRatio 新生代和老生代占比
4、 -XX:SurvivorRatio:伊甸园空间和幸存者空间的占比
5、 设定垃圾回收器 年轻代用 -XX:+UseParNewGC 年老代用-XX:+UseConcMarkSweepGC
(这个话题很大,可以从实践环节中随便摘一个进行总结,下面举例一个最普通的)
你可以来一个中规中矩的回
内存溢出包含很多种情况,我在平常工作中遇到最多的就是堆溢出
。有一次线上遇到故障,重新启动后,使用jstat命令,发现Old区在一直增长。我使用jmap命令,导出了一份线上堆栈,然后使用MAT
进行分析。通过对GC Roots
的分析,我发现了一个非常大的HashMap对象,这个原本是有位同学做缓存
用的,但是一个无界缓存,造成了堆内存占用一直上升。后来,将这个缓存改成 guava的Cache,并设置了弱引用,故障就消失了。
这个回答不是十分出彩,但着实是常见问题,让人挑不出毛病。
加载、验证、准备、解析、初始化。
Java对象由三个部分组成:对象头、实例数据、对齐填充。
对象头由两部分组成,第一部分存储对象自身的运行时数据:哈希码、GC分代年龄、锁标识状态、线程持有的锁、偏向线程ID(一般占32/64 bit)。第二部分是指针类型,指向对象的类元数据类型(即对象代表哪个类)。如果是数组对象,则对象头中还有一部分用来记录数组长度。
实例数据用来存储对象真正的有效信息(包括父类继承下来的和自己定义的)
对齐填充:JVM要求对象起始地址必须是8字节的整数倍(8字节对齐 )
这通常会使用另外一个参数:-XX:+PrintCommandLineFlags
可以打印所有的参数,包括使用的垃圾回收器。
在 Java 中最常见的就是强引用, 把一个对象赋给一个引用变量,这个引用变量就是一个强引用。当一个对象被强引用变量引用时,它处于可达状态,它是不可能被垃圾回收机制回收的,即使该对象以后永远都不会被用到 JVM 也不会回收。因此强引用是造成 Java 内存泄漏的主要原因之一。
根据 JVM 规范,JVM 内存共分为虚拟机栈、堆、方法区、程序计数器、本地方法栈五个部分。
具体可能会聊聊jdk1.7以前的PermGen(永久代),替换成Metaspace(元空间)
1、 原本永久代存储的数据:符号引用(Symbols)转移到了native heap;字面量(interned strings)转移到了java heap;类的静态变量(class statics)转移到了java heap
2、 Metaspace(元空间)存储的是类的元数据信息(metadata)
3、 元空间的本质和永久代类似,都是对JVM规范中方法区的实现。不过元空间与永久代之间最大的区别在于:元空间并不在虚拟机中,而是使用本地内存。
4、 替换的好处:一、字符串存在永久代中,容易出现性能问题和内存溢出。二、永久代会为 GC 带来不必要的复杂度,并且回收效率偏低。
理论上说上 32 位的 JVM 堆内存可以到达 2^32,即 4GB,但实际上会比这个小很多。不同操作系统之间不同,如 Windows 系统大约 1.5GB,Solaris 大约3GB。64 位 JVM 允许指定最大的堆内存,理论上可以达到 2^64,这是一个非常大的数字,实际上你可以指定堆内存大小到 100GB。甚至有的 JVM,如 Azul,堆内存到 1000G 都是可能的。
Map的key和value都可以是任何类型。但要注意的是,一定要重写它的equals和hashCode方法,否则容易发生内存泄漏。
标记清除(缺点是碎片化) 复制算法(缺点是浪费空间) 标记整理算法(效率比前两者差) 分代收集算法(老年代一般使用“标记-清除”、“标记-整理”算法,年轻代一般用复制算法)
Java 堆内存被划分为新生代和年老代两部分,新生代主要使用复制和标记-清除垃圾回收算法;年老代主要使用标记-整理垃圾回收算法,因此 java 虚拟中针对新生代和年老代分别提供了多种不同的垃圾收集器, JDK1.6 中 Sun HotSpot 虚拟机的垃圾收集器
-Xss可以设置线程栈的大小,当线程方法递归调用层次太深或者栈帧中的局部变量过多时,会出现栈溢出错误 java.lang.StackOverflowError
04、类加载为什么要使用双亲委派模式,有没有什么场景是打破了这个模式?
06、能够找到 Reference Chain 的对象,就一定会存活么?
10、Java 8 为什么要将永久代(PermGen)替换为元空间(MetaSpace)呢?
11、谈谈永久代
12、简述Java的对象结构
13、SWAP会影响性能么?
14、列举一些你知道的打破双亲委派机制的例子。为什么要打破?
21、什么是双亲委派机制?
23、程序计数器(线程私有)
24、为什么需要双亲委派模式?
25、介绍一下类文件结构吧!
27、MinorGC、MajorGC、FullGC 什么时候发生?
28、方法区溢出的原因?
29、如何判断对象可以被回收
32、类的实例化顺序
33、栈溢出的原因?
35、你知道哪些垃圾收集器?
36、本地方法区(线程私有)
38、分代收集算法
44、对象在哪块内存分配?
45、类加载的过程是什么?
46、谈谈 JVM 中的常量池
47、ZGC 了解吗?
50、模块化编程与热插拔
51、程序计数器
52、常用JVM基本配置参数
53、创建对象的过程是什么?
56、在老年代-标记整理算法
57、垃圾回收器的基本原理是什么?垃圾回收器可以马上回收内存吗?有什么办法主动通知虚拟机进行垃圾回收?
58、什么是Java虚拟机?为什么Java被称作是“平台无关的编程语言”?
60、什么是方法内联?
如果不背 Jvm面试题的答案,肯定面试会挂!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。