当前位置:   article > 正文

K近邻算法——手写数字识别_k近邻算法实现手写数字识别

k近邻算法实现手写数字识别

一、准备工作
前面的博客已讲述了K近邻的概念,这里是一个K近邻算法的应用。
准备内容:
1.手写数字训练集trainingDigits
在这里插入图片描述
2.手写数字测试集testDigits
在这里插入图片描述
程序的基本内容:
1.原算法的第一步是导入数据,并进行矩阵化处理,这里的第一步是将图片转化成向量。图片在数据集中是以数字的形式保存,3232,将二维图片转化成11024一维的向量。一共有接近2000的训练集和900多的测试集
2.将每一个测试样本都调用KNN算法,KNN算法的参数为1.测试向量 2.训练样本 3.类别 4.k值

代码:

import numpy as np
import operator
import os




# 图像转换为向量
def img2vector(filename):
    returnVect = np.zeros((1,1024))  # 生成一个1*1024的向量
    fr = open(filename)  # 打开文件
    for i in range(32):
        lineStr = fr.readline()  # 一行一行的读
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j]) # 一个一个的加入1*1024的向量中
    return returnVect  # 返回这个1*1024向量

# KNN
def classify0(inX,dataset,labels,k):
    dataSetSize = dataset.shape[0]
    #  下面计算距离
    diffMat = np.tile(inX,(dataSetSize,1))-dataset # tile()复制函数
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)     # 进行行相加
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()  #argsort()按照从小到大排序返回原序列元素的序号。
    # 选择距离最小的K个点
    classCount={}
    for i in range(k):
        voteIlabel =labels[sortedDistIndicies[i]]   # 找到与数据最近的k个标签
        classCount[voteIlabel] = classCount.get(voteIlabel,0)+1   # 将各个标签的数量添加到字典中
    # operator.itemgetter(1)选择字典的value进行排序,拍完序reserve反转
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    # print(sortedClassCount)
    return sortedClassCount[0][0]


# 测试手写数字识别
def handwritingClassTest():
    hwlabels = []
    trainingFileList = os.listdir('trainingDigits')
    m = len(trainingFileList)
    trainingMat = np.zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]     # 获取训练样本名字
        fileStr = fileNameStr.split('.')[0]   #获取训练样本的名字去掉后缀
        classNumStr = int(fileStr.split('_')[0])  # 获取‘0_13’前面数字,代表数字
        hwlabels.append(classNumStr)  # 类别标签保存到列表中
        trainingMat[i,:] = img2vector('trainingDigits/%s' %fileNameStr)  # 将全部训练样本组成一个矩阵
    testFileList = os.listdir('testDigits')  # 获取测试样本的列表
    errorCount = 0.0   # 错误分类
    mTest = len(testFileList)  # 测试样本的数量
    for i in range(mTest):
        fileNameStr = testFileList[i]  # 获取测试样本的全部名称
        fileStr = fileNameStr.split('.')[0]  # 获取测试样本的名称
        classNumStr = int(fileStr.split('_')[0]) # 得到类别名
        vectorUnderTest = img2vector('testDigits/%s'%fileNameStr)  # 转化成1*1024向量
        classifierResult = classify0(vectorUnderTest,trainingMat,hwlabels,3)  # 类别预测结果
        print('the classifier came back with :%d,the real answer is :%d' %(classifierResult,classNumStr))
        if classifierResult!=classNumStr:
            errorCount += 1.0
    print('the total number of error is : %d' %errorCount)
    print('the total error rate is :%f' % (errorCount/float(mTest)))


handwritingClassTest()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66

结果:

the classifier came back with :0,the real answer is :0
the classifier came back with :0,the real answer is :0
the classifier came back with :0,the real answer is :0
the classifier came back with :0,the real answer is :0
the classifier came back with :0,the real answer is :0
the classifier came back with :0,the real answer is :0

.
.
the classifier came back with :2,the real answer is :2
the classifier came back with :2,the real answer is :2
the classifier came back with :2,the real answer is :2
the classifier came back with :2,the real answer is :2
the classifier came back with :2,the real answer is :2
the classifier came back with :3,the real answer is :3
the classifier came back with :3,the real answer is :3
the classifier came back with :3,the real answer is :3

.
.


the classifier came back with :9,the real answer is :9
the classifier came back with :9,the real answer is :9
the classifier came back with :9,the real answer is :9
the total number of error is : 11
the total error rate is :0.011628

Process finished with exit code 0

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

可以看到预测的错误率为1.1%。通过更改变量K值和修改函数的handwritingClassTest随机选取训练样本、改变训练样本的数目,都会对K近邻算法的错误率产生影响。

样本集下载:百度云链接
提取码:g64m

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/码创造者/article/detail/1008006
推荐阅读
相关标签
  

闽ICP备14008679号