当前位置:   article > 正文

20. 算法之回溯算法_回溯算法的时间空间复杂度

回溯算法的时间空间复杂度

1. 概念

回溯算法实际上一个类似枚举的深度优先搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回(也就是递归返回),尝试别的路径。

回溯的处理思想,有点类似枚举(列出所有的情况)搜索。我们枚举所有的解,找到满足期望的解。为了有规律地枚举所有可能的解,避免遗漏和重复,我们把问题求解的过程分为多个阶段。每个阶段,我们都会面对一个岔路口,我们先随意选一条路走,当发现这条路走不通的时候(不符合期望的解),就回退到上一个岔路口,另选一种走法继续走。

2. 经典问题

2.1 问题说明

n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
在这里插入图片描述
我们把这个问题划分成 8 个阶段,依次将 8 个棋子放到第一行、第二行、第三行……第八行。在放置的过程中,我们不停地检查当前放法,是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种放法,继续尝试。

2.2 代码验证

package org.wanlong.algorithm;

/**
 * @author wanlong
 * @version 1.0
 * @description:
 * @date 2023/6/16 15:54
 */
public class NQueens {

    //皇后数
    static int QUEENS = 8;
    //下标表示行,值表示queen存储在哪一列
    int[] result = new int[QUEENS];

    /**
     * 在每行放置Queen
     *
     * @param row
     */
    public void setQueens(int row) {
        //递归中断
        if (row == QUEENS) {
            printQueens();
            return;
        }
        //在每行依次放置列 没有合适的则回到上一层
        for (int col = 0; col < QUEENS; col++) {
            if (isOk(row, col)) {
                //设置列
                result[row] = col;
                //开始下一行
                setQueens(row + 1);
            }
        }
    }

    /**
     * 打印输出
     */
    private void printQueens() {
        for (int i = 0; i < QUEENS; i++) {
            for (int j = 0; j < QUEENS; j++) {
                if (result[i] == j) {
                    System.out.print("Q| ");
                } else {
                    System.out.print("*| ");
                }
            }
            System.out.println();
        }
        System.out.println("-----------------------");
    }

    /**
     * 判断是否可以放置
     *
     * @param row 行
     * @param col 列
     * @return
     */
    private boolean isOk(int row, int col) {
        int leftup = col - 1;
        int rightup = col + 1;
        // 逐行往上考察每一行
        for (int i = row - 1; i >= 0; i--) {
            //列上存在queen
            if (result[i] == col)
                return false;
            //左上对角线存在queen
            if (leftup >= 0) {
                if (result[i] == leftup)
                    return false;
            }
            //右下对角线存在queen
            if (rightup < QUEENS) {
                if (result[i] == rightup)
                    return false;
            }
            leftup--;
            rightup++;
        }
        return true;
    }

    public static void main(String[] args) {
        NQueens queens = new NQueens();
        queens.setQueens(0);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90

3. 时间复杂度

N皇后问题的时间复杂度为: O(n!)实际为 n!/2

4. 优缺点

4.1 优点

回溯算法的思想非常简单,大部分情况下,都是用来解决广义的搜索问题,也就是,从一组可能的解中,选择出一个满足要求的解。回溯算法非常适合用递归来实现,在实现的过程中,剪枝操作是提高回溯效率的一种技巧。利用剪枝,我们并不需要穷举搜索所有的情况,从而提高搜索效率。

4.2 缺点

效率相对于低(动态规划)

5. 适用场景

回溯算法是个“万金油”。基本上能用动态规划、贪心解决的问题,我们都可以用回溯算法解决。回溯算法相当于穷举搜索。穷举所有的情况,然后对比得到最优解。不过,回溯算法的时间复杂度非常高,是指数级别的,只能用来解决小规模数据的问题。对于大规模数据的问题,用回溯算法解决的执行效率就很低了

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/码创造者/article/detail/1013960
推荐阅读
相关标签
  

闽ICP备14008679号