当前位置:   article > 正文

BERT+使用transformers库加载自己数据集做BERT预训练(普通方式+TrainerAPI)_使用transform库精调bert

使用transform库精调bert

在这里插入图片描述

一、简单介绍Word Embedding

在NLP任务中,我们需要对文本进行编码,使之成为计算机可以读懂的语言。在编码时,我们期望句子之间保持词语间的相似性。word embedding做的事情就是把一个词映射到低维的稠密空间,切语义相近的词向量离得比较近。

word2vec的缺点
1、相同词对应的向量训练好就固定了。
2. 在不同的场景中,词的意思是相同的。(即便是skip-gram,学习到的只是多个场景的综合意思)
BERT就是改进这两个缺点。

二、BERT的概念

说白了就是transformer的encoder部分,并不需要标签,有语料就能训练了。
BERT模型,本质可以把其看做是新的word2Vec。对于现有的任务,只需把BERT的输出看做是word2vec,在其之上建立自己的模型即可了。

BERT架构
  • 只有编码器的transformer
  • 两个版本:
    • base: blocks =12, hiddensize=768, heads = 12;
    • large: blocks =24, hiddensize=1024, heads = 18;
对输入的修改
  • 每个样本是一个句子对
  • 加入额外的片端嵌入
  • 位置编码可学习

cls是句子的开头,sep是两个句子的结尾。
segmentEmbed 前面一个句子是0,后面是1.
postionEmbend是自己学的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

三、bert代码

def get_tokens_and_segments(tokens_a, tokens_b=None):
    """获取输入序列的词元及其片段索引。"""
    tokens = ['<cls>'] + tokens_a + ['<sep>']
    # 0和1分别标记片段A和B
    segments = [0] * (len(tokens_a) + 2)
    if tokens_b is not None:
        tokens += tokens_b + ['<sep>']
        segments += [1] * (len(tokens_b) + 1)
    return tokens, segments
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

其中传入两个句子的tokens,构造成cls+tokena+sep+tokenb+sep的输入格式,构造segment时,前一个要+2,因为手动加上了cls和sep,后一个+1,因为只手动加了一个sep。

class BERTEncoder(nn.Module):
    """BERT encoder."""
    def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input,
                 ffn_num_hiddens, num_heads, num_layers, dropout,
                 max_len=1000, key_size=768, query_size=768, value_size=768,
                 **kwargs):
        super(BERTEncoder, self).__init__(**kwargs)
        self.token_embedding = nn.Embedding(vocab_size, num_hiddens)
        self.segment_embedding = nn.Embedding(2, num_hiddens)
        self.blks = nn.Sequential()
        for i in range(num_layers):
            self.blks.add_module(f"{
     i}", d2l.EncoderBlock(
                key_size, query_size, value_size, num_hiddens, norm_shape,
                ffn_num_input, ffn_num_hiddens, num_heads, dropout, True))
        # 在BERT中,位置嵌入是可学习的,因此我们创建一个足够长的位置嵌入参数
        self.pos_embedding = nn.Parameter(torch.randn(1, max_len,
                                                      num_hiddens))

    def forward(self, tokens, segments, valid_lens):
        # 在以下代码段中,`X`的形状保持不变:(批量大小,最大序列长度,`num_hiddens`)
        X = self.token_embedding(tokens) + self.segment_embedding(segments)
        X = X + self.pos_embedding.data[:, :X.shape[1], :]
        for blk in self.blks:
            X = blk(X, valid_lens)
        return X
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

四、使用transformers


                
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/码创造者/article/detail/877006
推荐阅读
相关标签
  

闽ICP备14008679号