当前位置:   article > 正文

机器学习笔记 - 生成对抗网络 (GAN)概述和入门示例_gan网络实例

gan网络实例

一、生成对抗网络 (GAN)

1、原理简述

        生成对抗网络 (GAN) 是一类功能强大的神经网络,用于无监督学习。它是由 Ian J. Goodfellow 在 2014 年开发和引入的。GAN 基本上由两个相互竞争的神经网络模型组成的系统,它们相互竞争,能够分析、捕获和复制数据集中的变化。

        在 GAN 中,有一个生成器和一个鉴别器。生成器生成假数据样本(无论是图像、音频等)并试图欺骗鉴别器。另一方面,鉴别器试图区分真假样本。生成器和判别器都是神经网络,它们在训练阶段都相互竞争。重复这些步骤,在这个过程中,生成器和鉴别器在每次重复后在各自的工作中变得越来越好。

        生成模型捕获数据的分布,并以尝试最大化判别器出错的概率的方式进行训练。另一方面,判别器基于一个模型,该模型估计它获得的样本是从训练数据而不是从生成器接收的概率。GAN 被表述为一个极小极大游戏,其中判别器试图最小化其奖励V(D, G),而生成器试图最小化判别器的奖励,或者换句话说,最大化其损失。它可以用以下公式在数学上描述。 

         其中&#

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/神奇cpp/article/detail/875892
推荐阅读
相关标签
  

闽ICP备14008679号