赞
踩
1、定义 (什么是递归?)
在数学与计算机科学中,递归(Recursion)是指在函数的定义中使用函数自身的方法。实际上,递归,顾名思义,其包含了两个意思:递 和 归,这正是递归思想的精华所在。
2、递归思想的内涵(递归的精髓是什么?)
正如上面所描述的场景,递归就是有去(递去)有回(归来)。“有去”是指:递归问题必须可以分解为若干个规模较小,与原问题形式相同的子问题,这些子问题可以用相同的解题思路来解决;“有回”是指 : 这些问题的演化过程是一个从大到小,由近及远的过程,并且会有一个明确的终点(临界点),一旦到达了这个临界点,就不用再往更小、更远的地方走下去。最后,从这个临界点开始,原路返回到原点,原问题解决。
更直接地说,递归的基本思想就是把规模大的问题转化为规模小的相似的子问题来解决。特别地,在函数实现时,因为解决大问题的方法和解决小问题的方法往往是同一个方法,所以就产生了函数调用它自身的情况,这也正是递归的定义所在。格外重要的是,这个解决问题的函数必须有明确的结束条件,否则就会导致无限递归的情况。
3、用归纳法来理解递归
递归的数学模型其实就是 数学归纳法,这个在高中的数列里面是最常用的了,回忆一下数学归纳法。
第一要素:明确你这个函数想要干什么
对于递归,我觉得很重要的一个事就是,这个函数的功能是什么,他要完成什么样的一件事,而这个,是完全由你自己来定义的。也就是说,我们先不管函数里面的代码什么,而是要先明白,你这个函数是要用来干什么。
第二要素:寻找递归结束条件
所谓递归,就是会在函数内部代码中,调用这个函数本身,所以,我们必须要找出递归的结束条件,不然的话,会一直调用自己,进入无底洞。也就是说,我们需要找出当参数为啥时,递归结束,之后直接把结果返回,请注意,这个时候我们必须能根据这个参数的值,能够直接知道函数的结果是什么。
第三要素:找出函数的等价关系式
第三要素就是,我们要不断缩小参数的范围,缩小之后,我们可以通过一些辅助的变量或者操作,使原函数的结果不变。
对于递归问题,我主要是紧紧围绕着以下几点来解决:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。