当前位置:   article > 正文

IMU姿态滤波算法——Mahony算法:原理与代码_mahony 算法

mahony 算法

图片

1 前言

Mahony算法常见的姿态融合算法,根据加速度计、陀螺仪、以及磁力计,融合计算机体四元数,计算速度快、精度较高。本文介绍六轴融合,即根据加速度计和陀螺仪数据,计算姿态。
我们需要计算的是机体的姿态。计算角度可以通过角速度积分,也可以通过加速度正交分解,但这两种方法都存在缺陷。角速度的误差会随着积分不断增大,而加速度存在高频噪声,因此希望融合两种数据。

2 算法

2.1 重力对齐误差

首先要指出的是,Mahony算法假设加速度计测量的加速度完全由重力提供,即物体本体运动产生的加速度可忽略不计。在这一假设下,我们假设当前时刻机体的姿态为,则将重力向量的表示转到机体坐标系下,应该为:,这里表示四元数对应的旋转矩阵:

进一步地,带入,得到

我们计加速度计测量得到的加速度,如果此时没有误差,应该有,但实际两个向量并不重合,存在一定的误差 。

为表示出,可以利用向量的叉乘:。因为叉乘的定义为:,当归一化为单位向量时,反应的就是角度。这里更准确的写为,下一时刻{t+1}时的误差为:

其中  为根据当前{t}时刻估计的角度四元数。再记这个误差的积分量为:

误差的积分量也参与了后续计算。

2.2 角速度融合

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号