当前位置:   article > 正文

动手学深度学习之kaggle竞赛_动手学深度学习实战kaggle比赛

动手学深度学习实战kaggle比赛

实战Kaggle比赛:图像分类(CIFAR-10)

import collections
import math
import os
import shutil
import pandas as pd
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

我们提供包含前1000个训练图像和5个随机测试图像的数据集的小规模样本

d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip',
                                '2068874e4b9a9f0fb07ebe0ad2b29754449ccacd')

demo = True

if demo:
    data_dir = d2l.download_extract('cifar10_tiny')
else:
    data_dir = '../data/cifar-10/'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
Downloading ../data/kaggle_cifar10_tiny.zip from http://d2l-data.s3-accelerate.amazonaws.com/kaggle_cifar10_tiny.zip...
  • 1

整理数据集

def read_csv_labels(fname):
    """读取‘fname’来给标签字典返回一个文件名"""
    with open(fname, 'r') as f:
        lines = f.readlines()[1:]
    tokens = [l.rstrip().split(',') for l in lines]
    return dict(((name, label) for name, label in tokens))

labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
labels
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
{'1': 'frog',
 '2': 'truck',
 '3': 'truck',
 '4': 'deer',
 '5': 'automobile',
 '6': 'automobile',
 '7': 'bird',
 '8': 'horse',
 '9': 'ship',
 '10': 'cat',
 '11': 'deer',
 '12': 'horse',
 '13': 'horse',
 '14': 'bird',
 '15': 'truck',
 '16': 'truck',
 '17': 'truck',
 '18': 'cat',
 '19': 'bird',
 '20': 'frog',
 '21': 'deer',
 '22': 'cat',
 '23': 'frog',
 '24': 'frog',
 '25': 'bird',
 '26': 'frog',
 '27': 'cat',
 '28': 'dog',
 '29': 'deer',
 '30': 'airplane',
 '31': 'airplane',
 '32': 'truck',
 '33': 'automobile',
 '34': 'cat',
 '35': 'deer',
 '36': 'airplane',
 '37': 'cat',
 '38': 'horse',
 '39': 'cat',
 '40': 'cat',
 '41': 'dog',
 '42': 'bird',
 '43': 'bird',
 '44': 'horse',
 '45': 'automobile',
 '46': 'automobile',
 '47': 'automobile',
 '48': 'bird',
 '49': 'bird',
 '50': 'airplane',
 '51': 'truck',
 '52': 'dog',
 '53': 'horse',
 '54': 'truck',
 '55': 'bird',
 '56': 'bird',
 '57': 'dog',
 '58': 'bird',
 '59': 'deer',
 '60': 'cat',
 '61': 'automobile',
 '62': 'automobile',
 '63': 'ship',
 '64': 'bird',
 '65': 'automobile',
 '66': 'automobile',
 '67': 'deer',
 '68': 'truck',
 '69': 'horse',
 '70': 'ship',
 '71': 'dog',
 '72': 'truck',
 '73': 'frog',
 '74': 'horse',
 '75': 'cat',
 '76': 'automobile',
 '77': 'truck',
 '78': 'airplane',
 '79': 'cat',
 '80': 'automobile',
 '81': 'cat',
 '82': 'dog',
 '83': 'deer',
 '84': 'dog',
 '85': 'horse',
 '86': 'horse',
 '87': 'deer',
 '88': 'horse',
 '89': 'truck',
 '90': 'deer',
 '91': 'bird',
 '92': 'cat',
 '93': 'ship',
 '94': 'airplane',
 '95': 'automobile',
 '96': 'frog',
 '97': 'automobile',
 '98': 'automobile',
 '99': 'deer',
 '100': 'automobile',
 '101': 'ship',
 '102': 'cat',
 '103': 'truck',
 '104': 'frog',
 '105': 'frog',
 '106': 'automobile',
 '107': 'ship',
 '108': 'dog',
 '109': 'bird',
 '110': 'truck',
 '111': 'truck',
 '112': 'ship',
 '113': 'automobile',
 '114': 'horse',
 '115': 'horse',
 '116': 'airplane',
 '117': 'airplane',
 '118': 'frog',
 '119': 'truck',
 '120': 'automobile',
 '121': 'bird',
 '122': 'bird',
 '123': 'truck',
 '124': 'bird',
 '125': 'frog',
 '126': 'frog',
 '127': 'automobile',
 '128': 'truck',
 '129': 'dog',
 '130': 'airplane',
 '131': 'deer',
 '132': 'horse',
 '133': 'frog',
 '134': 'horse',
 '135': 'automobile',
 '136': 'ship',
 '137': 'automobile',
 '138': 'automobile',
 '139': 'bird',
 '140': 'ship',
 '141': 'automobile',
 '142': 'cat',
 '143': 'cat',
 '144': 'frog',
 '145': 'bird',
 '146': 'deer',
 '147': 'truck',
 '148': 'truck',
 '149': 'dog',
 '150': 'deer',
 '151': 'cat',
 '152': 'frog',
 '153': 'horse',
 '154': 'deer',
 '155': 'frog',
 '156': 'ship',
 '157': 'dog',
 '158': 'dog',
 '159': 'deer',
 '160': 'cat',
 '161': 'automobile',
 '162': 'ship',
 '163': 'deer',
 '164': 'horse',
 '165': 'frog',
 '166': 'airplane',
 '167': 'truck',
 '168': 'dog',
 '169': 'automobile',
 '170': 'cat',
 '171': 'ship',
 '172': 'bird',
 '173': 'horse',
 '174': 'dog',
 '175': 'cat',
 '176': 'deer',
 '177': 'automobile',
 '178': 'dog',
 '179': 'horse',
 '180': 'airplane',
 '181': 'deer',
 '182': 'horse',
 '183': 'dog',
 '184': 'dog',
 '185': 'automobile',
 '186': 'airplane',
 '187': 'truck',
 '188': 'frog',
 '189': 'truck',
 '190': 'airplane',
 '191': 'ship',
 '192': 'horse',
 '193': 'ship',
 '194': 'ship',
 '195': 'bird',
 '196': 'dog',
 '197': 'bird',
 '198': 'cat',
 '199': 'dog',
 '200': 'airplane',
 '201': 'frog',
 '202': 'automobile',
 '203': 'truck',
 '204': 'cat',
 '205': 'frog',
 '206': 'truck',
 '207': 'automobile',
 '208': 'cat',
 '209': 'truck',
 '210': 'frog',
 '211': 'frog',
 '212': 'horse',
 '213': 'automobile',
 '214': 'airplane',
 '215': 'truck',
 '216': 'dog',
 '217': 'ship',
 '218': 'dog',
 '219': 'bird',
 '220': 'truck',
 '221': 'airplane',
 '222': 'ship',
 '223': 'ship',
 '224': 'airplane',
 '225': 'frog',
 '226': 'truck',
 '227': 'automobile',
 '228': 'automobile',
 '229': 'frog',
 '230': 'cat',
 '231': 'horse',
 '232': 'frog',
 '233': 'frog',
 '234': 'airplane',
 '235': 'frog',
 '236': 'frog',
 '237': 'automobile',
 '238': 'horse',
 '239': 'automobile',
 '240': 'dog',
 '241': 'ship',
 '242': 'cat',
 '243': 'frog',
 '244': 'frog',
 '245': 'ship',
 '246': 'frog',
 '247': 'ship',
 '248': 'deer',
 '249': 'frog',
 '250': 'frog',
 '251': 'automobile',
 '252': 'cat',
 '253': 'ship',
 '254': 'cat',
 '255': 'deer',
 '256': 'automobile',
 '257': 'horse',
 '258': 'automobile',
 '259': 'cat',
 '260': 'ship',
 '261': 'dog',
 '262': 'automobile',
 '263': 'automobile',
 '264': 'deer',
 '265': 'airplane',
 '266': 'truck',
 '267': 'cat',
 '268': 'horse',
 '269': 'deer',
 '270': 'truck',
 '271': 'truck',
 '272': 'bird',
 '273': 'deer',
 '274': 'truck',
 '275': 'truck',
 '276': 'automobile',
 '277': 'airplane',
 '278': 'dog',
 '279': 'truck',
 '280': 'airplane',
 '281': 'ship',
 '282': 'bird',
 '283': 'automobile',
 '284': 'bird',
 '285': 'airplane',
 '286': 'dog',
 '287': 'frog',
 '288': 'cat',
 '289': 'bird',
 '290': 'horse',
 '291': 'ship',
 '292': 'ship',
 '293': 'frog',
 '294': 'airplane',
 '295': 'horse',
 '296': 'truck',
 '297': 'deer',
 '298': 'dog',
 '299': 'frog',
 '300': 'deer',
 '301': 'bird',
 '302': 'automobile',
 '303': 'automobile',
 '304': 'bird',
 '305': 'automobile',
 '306': 'dog',
 '307': 'truck',
 '308': 'truck',
 '309': 'airplane',
 '310': 'ship',
 '311': 'deer',
 '312': 'automobile',
 '313': 'automobile',
 '314': 'frog',
 '315': 'cat',
 '316': 'cat',
 '317': 'truck',
 '318': 'airplane',
 '319': 'horse',
 '320': 'truck',
 '321': 'horse',
 '322': 'horse',
 '323': 'truck',
 '324': 'automobile',
 '325': 'dog',
 '326': 'automobile',
 '327': 'frog',
 '328': 'frog',
 '329': 'ship',
 '330': 'horse',
 '331': 'automobile',
 '332': 'cat',
 '333': 'airplane',
 '334': 'cat',
 '335': 'cat',
 '336': 'bird',
 '337': 'deer',
 '338': 'dog',
 '339': 'horse',
 '340': 'dog',
 '341': 'truck',
 '342': 'airplane',
 '343': 'cat',
 '344': 'deer',
 '345': 'airplane',
 '346': 'deer',
 '347': 'deer',
 '348': 'frog',
 '349': 'airplane',
 '350': 'airplane',
 '351': 'frog',
 '352': 'frog',
 '353': 'airplane',
 '354': 'ship',
 '355': 'automobile',
 '356': 'frog',
 '357': 'bird',
 '358': 'truck',
 '359': 'bird',
 '360': 'dog',
 '361': 'truck',
 '362': 'frog',
 '363': 'horse',
 '364': 'deer',
 '365': 'automobile',
 '366': 'ship',
 '367': 'horse',
 '368': 'cat',
 '369': 'frog',
 '370': 'truck',
 '371': 'cat',
 '372': 'airplane',
 '373': 'deer',
 '374': 'airplane',
 '375': 'dog',
 '376': 'automobile',
 '377': 'airplane',
 '378': 'cat',
 '379': 'deer',
 '380': 'ship',
 '381': 'dog',
 '382': 'deer',
 '383': 'horse',
 '384': 'bird',
 '385': 'cat',
 '386': 'truck',
 '387': 'horse',
 '388': 'frog',
 '389': 'horse',
 '390': 'automobile',
 '391': 'deer',
 '392': 'horse',
 '393': 'airplane',
 '394': 'automobile',
 '395': 'horse',
 '396': 'cat',
 '397': 'automobile',
 '398': 'ship',
 '399': 'deer',
 '400': 'deer',
 '401': 'bird',
 '402': 'airplane',
 '403': 'bird',
 '404': 'bird',
 '405': 'airplane',
 '406': 'airplane',
 '407': 'truck',
 '408': 'airplane',
 '409': 'truck',
 '410': 'frog',
 '411': 'ship',
 '412': 'bird',
 '413': 'horse',
 '414': 'horse',
 '415': 'deer',
 '416': 'airplane',
 '417': 'cat',
 '418': 'airplane',
 '419': 'ship',
 '420': 'truck',
 '421': 'deer',
 '422': 'bird',
 '423': 'horse',
 '424': 'bird',
 '425': 'dog',
 '426': 'bird',
 '427': 'dog',
 '428': 'automobile',
 '429': 'truck',
 '430': 'deer',
 '431': 'ship',
 '432': 'dog',
 '433': 'automobile',
 '434': 'horse',
 '435': 'deer',
 '436': 'deer',
 '437': 'airplane',
 '438': 'frog',
 '439': 'truck',
 '440': 'airplane',
 '441': 'horse',
 '442': 'ship',
 '443': 'ship',
 '444': 'truck',
 '445': 'truck',
 '446': 'cat',
 '447': 'cat',
 '448': 'deer',
 '449': 'airplane',
 '450': 'deer',
 '451': 'dog',
 '452': 'frog',
 '453': 'frog',
 '454': 'airplane',
 '455': 'automobile',
 '456': 'airplane',
 '457': 'ship',
 '458': 'airplane',
 '459': 'deer',
 '460': 'ship',
 '461': 'ship',
 '462': 'automobile',
 '463': 'dog',
 '464': 'bird',
 '465': 'frog',
 '466': 'ship',
 '467': 'automobile',
 '468': 'airplane',
 '469': 'airplane',
 '470': 'horse',
 '471': 'horse',
 '472': 'dog',
 '473': 'truck',
 '474': 'frog',
 '475': 'bird',
 '476': 'ship',
 '477': 'cat',
 '478': 'deer',
 '479': 'horse',
 '480': 'cat',
 '481': 'truck',
 '482': 'airplane',
 '483': 'automobile',
 '484': 'bird',
 '485': 'deer',
 '486': 'ship',
 '487': 'automobile',
 '488': 'ship',
 '489': 'frog',
 '490': 'deer',
 '491': 'deer',
 '492': 'dog',
 '493': 'horse',
 '494': 'automobile',
 '495': 'cat',
 '496': 'truck',
 '497': 'ship',
 '498': 'airplane',
 '499': 'automobile',
 '500': 'horse',
 '501': 'dog',
 '502': 'ship',
 '503': 'bird',
 '504': 'ship',
 '505': 'airplane',
 '506': 'deer',
 '507': 'automobile',
 '508': 'ship',
 '509': 'truck',
 '510': 'ship',
 '511': 'bird',
 '512': 'truck',
 '513': 'truck',
 '514': 'bird',
 '515': 'horse',
 '516': 'dog',
 '517': 'horse',
 '518': 'cat',
 '519': 'ship',
 '520': 'ship',
 '521': 'deer',
 '522': 'deer',
 '523': 'bird',
 '524': 'horse',
 '525': 'automobile',
 '526': 'frog',
 '527': 'deer',
 '528': 'airplane',
 '529': 'deer',
 '530': 'frog',
 '531': 'truck',
 '532': 'horse',
 '533': 'frog',
 '534': 'bird',
 '535': 'dog',
 '536': 'dog',
 '537': 'automobile',
 '538': 'horse',
 '539': 'bird',
 '540': 'bird',
 '541': 'bird',
 '542': 'truck',
 '543': 'dog',
 '544': 'deer',
 '545': 'bird',
 '546': 'horse',
 '547': 'ship',
 '548': 'automobile',
 '549': 'cat',
 '550': 'deer',
 '551': 'cat',
 '552': 'horse',
 '553': 'frog',
 '554': 'truck',
 '555': 'ship',
 '556': 'airplane',
 '557': 'frog',
 '558': 'airplane',
 '559': 'bird',
 '560': 'bird',
 '561': 'bird',
 '562': 'automobile',
 '563': 'ship',
 '564': 'deer',
 '565': 'airplane',
 '566': 'automobile',
 '567': 'ship',
 '568': 'ship',
 '569': 'automobile',
 '570': 'dog',
 '571': 'horse',
 '572': 'frog',
 '573': 'deer',
 '574': 'dog',
 '575': 'ship',
 '576': 'horse',
 '577': 'automobile',
 '578': 'truck',
 '579': 'automobile',
 '580': 'truck',
 '581': 'ship',
 '582': 'deer',
 '583': 'horse',
 '584': 'cat',
 '585': 'ship',
 '586': 'ship',
 '587': 'bird',
 '588': 'frog',
 '589': 'frog',
 '590': 'horse',
 '591': 'automobile',
 '592': 'frog',
 '593': 'ship',
 '594': 'automobile',
 '595': 'truck',
 '596': 'horse',
 '597': 'ship',
 '598': 'cat',
 '599': 'airplane',
 '600': 'automobile',
 '601': 'airplane',
 '602': 'ship',
 '603': 'ship',
 '604': 'cat',
 '605': 'airplane',
 '606': 'airplane',
 '607': 'automobile',
 '608': 'dog',
 '609': 'airplane',
 '610': 'ship',
 '611': 'ship',
 '612': 'horse',
 '613': 'truck',
 '614': 'truck',
 '615': 'airplane',
 '616': 'truck',
 '617': 'deer',
 '618': 'automobile',
 '619': 'cat',
 '620': 'frog',
 '621': 'frog',
 '622': 'deer',
 '623': 'deer',
 '624': 'horse',
 '625': 'dog',
 '626': 'frog',
 '627': 'airplane',
 '628': 'ship',
 '629': 'airplane',
 '630': 'cat',
 '631': 'bird',
 '632': 'ship',
 '633': 'deer',
 '634': 'frog',
 '635': 'truck',
 '636': 'truck',
 '637': 'horse',
 '638': 'airplane',
 '639': 'cat',
 '640': 'cat',
 '641': 'frog',
 '642': 'horse',
 '643': 'deer',
 '644': 'truck',
 '645': 'automobile',
 '646': 'frog',
 '647': 'bird',
 '648': 'horse',
 '649': 'bird',
 '650': 'bird',
 '651': 'airplane',
 '652': 'frog',
 '653': 'horse',
 '654': 'dog',
 '655': 'horse',
 '656': 'frog',
 '657': 'ship',
 '658': 'truck',
 '659': 'airplane',
 '660': 'truck',
 '661': 'deer',
 '662': 'deer',
 '663': 'horse',
 '664': 'airplane',
 '665': 'truck',
 '666': 'deer',
 '667': 'truck',
 '668': 'frog',
 '669': 'truck',
 '670': 'deer',
 '671': 'dog',
 '672': 'horse',
 '673': 'truck',
 '674': 'bird',
 '675': 'deer',
 '676': 'dog',
 '677': 'automobile',
 '678': 'deer',
 '679': 'cat',
 '680': 'truck',
 '681': 'frog',
 '682': 'dog',
 '683': 'frog',
 '684': 'truck',
 '685': 'cat',
 '686': 'cat',
 '687': 'dog',
 '688': 'airplane',
 '689': 'horse',
 '690': 'bird',
 '691': 'automobile',
 '692': 'cat',
 '693': 'frog',
 '694': 'deer',
 '695': 'airplane',
 '696': 'airplane',
 '697': 'bird',
 '698': 'dog',
 '699': 'airplane',
 '700': 'automobile',
 '701': 'airplane',
 '702': 'bird',
 '703': 'cat',
 '704': 'truck',
 '705': 'ship',
 '706': 'deer',
 '707': 'truck',
 '708': 'ship',
 '709': 'airplane',
 '710': 'bird',
 '711': 'frog',
 '712': 'deer',
 '713': 'deer',
 '714': 'airplane',
 '715': 'automobile',
 '716': 'ship',
 '717': 'ship',
 '718': 'cat',
 '719': 'frog',
 '720': 'truck',
 '721': 'frog',
 '722': 'frog',
 '723': 'horse',
 '724': 'ship',
 '725': 'bird',
 '726': 'deer',
 '727': 'dog',
 '728': 'horse',
 '729': 'frog',
 '730': 'dog',
 '731': 'cat',
 '732': 'airplane',
 '733': 'dog',
 '734': 'airplane',
 '735': 'dog',
 '736': 'airplane',
 '737': 'ship',
 '738': 'bird',
 '739': 'frog',
 '740': 'horse',
 '741': 'cat',
 '742': 'ship',
 '743': 'bird',
 '744': 'automobile',
 '745': 'horse',
 '746': 'frog',
 '747': 'horse',
 '748': 'automobile',
 '749': 'airplane',
 '750': 'truck',
 '751': 'dog',
 '752': 'dog',
 '753': 'airplane',
 '754': 'automobile',
 '755': 'horse',
 '756': 'frog',
 '757': 'truck',
 '758': 'airplane',
 '759': 'deer',
 '760': 'horse',
 '761': 'horse',
 '762': 'automobile',
 '763': 'dog',
 '764': 'truck',
 '765': 'deer',
 '766': 'airplane',
 '767': 'ship',
 '768': 'dog',
 '769': 'truck',
 '770': 'truck',
 '771': 'frog',
 '772': 'horse',
 '773': 'automobile',
 '774': 'ship',
 '775': 'cat',
 '776': 'bird',
 '777': 'cat',
 '778': 'ship',
 '779': 'bird',
 '780': 'bird',
 '781': 'deer',
 '782': 'frog',
 '783': 'airplane',
 '784': 'airplane',
 '785': 'dog',
 '786': 'cat',
 '787': 'ship',
 '788': 'bird',
 '789': 'cat',
 '790': 'horse',
 '791': 'bird',
 '792': 'truck',
 '793': 'cat',
 '794': 'ship',
 '795': 'horse',
 '796': 'ship',
 '797': 'bird',
 '798': 'horse',
 '799': 'truck',
 '800': 'airplane',
 '801': 'bird',
 '802': 'cat',
 '803': 'bird',
 '804': 'bird',
 '805': 'bird',
 '806': 'cat',
 '807': 'cat',
 '808': 'frog',
 '809': 'bird',
 '810': 'cat',
 '811': 'bird',
 '812': 'ship',
 '813': 'airplane',
 '814': 'dog',
 '815': 'dog',
 '816': 'automobile',
 '817': 'deer',
 '818': 'dog',
 '819': 'frog',
 '820': 'frog',
 '821': 'bird',
 '822': 'horse',
 '823': 'airplane',
 '824': 'automobile',
 '825': 'horse',
 '826': 'horse',
 '827': 'ship',
 '828': 'bird',
 '829': 'truck',
 '830': 'bird',
 '831': 'bird',
 '832': 'deer',
 '833': 'bird',
 '834': 'automobile',
 '835': 'automobile',
 '836': 'automobile',
 '837': 'frog',
 '838': 'frog',
 '839': 'frog',
 '840': 'dog',
 '841': 'automobile',
 '842': 'automobile',
 '843': 'horse',
 '844': 'airplane',
 '845': 'deer',
 '846': 'cat',
 '847': 'cat',
 '848': 'horse',
 '849': 'automobile',
 '850': 'bird',
 '851': 'cat',
 '852': 'dog',
 '853': 'dog',
 '854': 'dog',
 '855': 'frog',
 '856': 'automobile',
 '857': 'deer',
 '858': 'cat',
 '859': 'horse',
 '860': 'ship',
 '861': 'ship',
 '862': 'cat',
 '863': 'frog',
 '864': 'frog',
 '865': 'bird',
 '866': 'cat',
 '867': 'airplane',
 '868': 'truck',
 '869': 'deer',
 '870': 'cat',
 '871': 'ship',
 '872': 'airplane',
 '873': 'airplane',
 '874': 'automobile',
 '875': 'automobile',
 '876': 'dog',
 '877': 'deer',
 '878': 'truck',
 '879': 'cat',
 '880': 'automobile',
 '881': 'ship',
 '882': 'truck',
 '883': 'cat',
 '884': 'truck',
 '885': 'truck',
 '886': 'bird',
 '887': 'truck',
 '888': 'deer',
 '889': 'ship',
 '890': 'bird',
 '891': 'truck',
 '892': 'ship',
 '893': 'ship',
 '894': 'automobile',
 '895': 'dog',
 '896': 'cat',
 '897': 'frog',
 '898': 'ship',
 '899': 'horse',
 '900': 'frog',
 '901': 'truck',
 '902': 'ship',
 '903': 'airplane',
 '904': 'frog',
 '905': 'deer',
 '906': 'airplane',
 '907': 'airplane',
 '908': 'bird',
 '909': 'dog',
 '910': 'ship',
 '911': 'bird',
 '912': 'airplane',
 '913': 'bird',
 '914': 'horse',
 '915': 'frog',
 '916': 'truck',
 '917': 'horse',
 '918': 'automobile',
 '919': 'dog',
 '920': 'dog',
 '921': 'frog',
 '922': 'frog',
 '923': 'cat',
 '924': 'frog',
 '925': 'bird',
 '926': 'deer',
 '927': 'horse',
 '928': 'airplane',
 '929': 'dog',
 '930': 'frog',
 '931': 'deer',
 '932': 'frog',
 '933': 'dog',
 '934': 'bird',
 '935': 'deer',
 '936': 'frog',
 '937': 'automobile',
 '938': 'frog',
 '939': 'airplane',
 '940': 'deer',
 '941': 'airplane',
 '942': 'cat',
 '943': 'automobile',
 '944': 'ship',
 '945': 'dog',
 '946': 'deer',
 '947': 'deer',
 '948': 'automobile',
 '949': 'horse',
 '950': 'cat',
 '951': 'truck',
 '952': 'deer',
 '953': 'horse',
 '954': 'truck',
 '955': 'horse',
 '956': 'cat',
 '957': 'horse',
 '958': 'bird',
 '959': 'ship',
 '960': 'deer',
 '961': 'frog',
 '962': 'frog',
 '963': 'automobile',
 '964': 'bird',
 '965': 'truck',
 '966': 'airplane',
 '967': 'deer',
 '968': 'ship',
 '969': 'horse',
 '970': 'cat',
 '971': 'truck',
 '972': 'ship',
 '973': 'horse',
 '974': 'horse',
 '975': 'airplane',
 '976': 'bird',
 '977': 'deer',
 '978': 'automobile',
 '979': 'automobile',
 '980': 'deer',
 '981': 'automobile',
 '982': 'dog',
 '983': 'deer',
 '984': 'airplane',
 '985': 'dog',
 '986': 'frog',
 '987': 'bird',
 '988': 'ship',
 '989': 'dog',
 '990': 'airplane',
 '991': 'bird',
 '992': 'automobile',
 '993': 'cat',
 '994': 'dog',
 '995': 'horse',
 '996': 'cat',
 '997': 'dog',
 '998': 'automobile',
 '999': 'cat',
 '1000': 'dog'}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432
  • 433
  • 434
  • 435
  • 436
  • 437
  • 438
  • 439
  • 440
  • 441
  • 442
  • 443
  • 444
  • 445
  • 446
  • 447
  • 448
  • 449
  • 450
  • 451
  • 452
  • 453
  • 454
  • 455
  • 456
  • 457
  • 458
  • 459
  • 460
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • 472
  • 473
  • 474
  • 475
  • 476
  • 477
  • 478
  • 479
  • 480
  • 481
  • 482
  • 483
  • 484
  • 485
  • 486
  • 487
  • 488
  • 489
  • 490
  • 491
  • 492
  • 493
  • 494
  • 495
  • 496
  • 497
  • 498
  • 499
  • 500
  • 501
  • 502
  • 503
  • 504
  • 505
  • 506
  • 507
  • 508
  • 509
  • 510
  • 511
  • 512
  • 513
  • 514
  • 515
  • 516
  • 517
  • 518
  • 519
  • 520
  • 521
  • 522
  • 523
  • 524
  • 525
  • 526
  • 527
  • 528
  • 529
  • 530
  • 531
  • 532
  • 533
  • 534
  • 535
  • 536
  • 537
  • 538
  • 539
  • 540
  • 541
  • 542
  • 543
  • 544
  • 545
  • 546
  • 547
  • 548
  • 549
  • 550
  • 551
  • 552
  • 553
  • 554
  • 555
  • 556
  • 557
  • 558
  • 559
  • 560
  • 561
  • 562
  • 563
  • 564
  • 565
  • 566
  • 567
  • 568
  • 569
  • 570
  • 571
  • 572
  • 573
  • 574
  • 575
  • 576
  • 577
  • 578
  • 579
  • 580
  • 581
  • 582
  • 583
  • 584
  • 585
  • 586
  • 587
  • 588
  • 589
  • 590
  • 591
  • 592
  • 593
  • 594
  • 595
  • 596
  • 597
  • 598
  • 599
  • 600
  • 601
  • 602
  • 603
  • 604
  • 605
  • 606
  • 607
  • 608
  • 609
  • 610
  • 611
  • 612
  • 613
  • 614
  • 615
  • 616
  • 617
  • 618
  • 619
  • 620
  • 621
  • 622
  • 623
  • 624
  • 625
  • 626
  • 627
  • 628
  • 629
  • 630
  • 631
  • 632
  • 633
  • 634
  • 635
  • 636
  • 637
  • 638
  • 639
  • 640
  • 641
  • 642
  • 643
  • 644
  • 645
  • 646
  • 647
  • 648
  • 649
  • 650
  • 651
  • 652
  • 653
  • 654
  • 655
  • 656
  • 657
  • 658
  • 659
  • 660
  • 661
  • 662
  • 663
  • 664
  • 665
  • 666
  • 667
  • 668
  • 669
  • 670
  • 671
  • 672
  • 673
  • 674
  • 675
  • 676
  • 677
  • 678
  • 679
  • 680
  • 681
  • 682
  • 683
  • 684
  • 685
  • 686
  • 687
  • 688
  • 689
  • 690
  • 691
  • 692
  • 693
  • 694
  • 695
  • 696
  • 697
  • 698
  • 699
  • 700
  • 701
  • 702
  • 703
  • 704
  • 705
  • 706
  • 707
  • 708
  • 709
  • 710
  • 711
  • 712
  • 713
  • 714
  • 715
  • 716
  • 717
  • 718
  • 719
  • 720
  • 721
  • 722
  • 723
  • 724
  • 725
  • 726
  • 727
  • 728
  • 729
  • 730
  • 731
  • 732
  • 733
  • 734
  • 735
  • 736
  • 737
  • 738
  • 739
  • 740
  • 741
  • 742
  • 743
  • 744
  • 745
  • 746
  • 747
  • 748
  • 749
  • 750
  • 751
  • 752
  • 753
  • 754
  • 755
  • 756
  • 757
  • 758
  • 759
  • 760
  • 761
  • 762
  • 763
  • 764
  • 765
  • 766
  • 767
  • 768
  • 769
  • 770
  • 771
  • 772
  • 773
  • 774
  • 775
  • 776
  • 777
  • 778
  • 779
  • 780
  • 781
  • 782
  • 783
  • 784
  • 785
  • 786
  • 787
  • 788
  • 789
  • 790
  • 791
  • 792
  • 793
  • 794
  • 795
  • 796
  • 797
  • 798
  • 799
  • 800
  • 801
  • 802
  • 803
  • 804
  • 805
  • 806
  • 807
  • 808
  • 809
  • 810
  • 811
  • 812
  • 813
  • 814
  • 815
  • 816
  • 817
  • 818
  • 819
  • 820
  • 821
  • 822
  • 823
  • 824
  • 825
  • 826
  • 827
  • 828
  • 829
  • 830
  • 831
  • 832
  • 833
  • 834
  • 835
  • 836
  • 837
  • 838
  • 839
  • 840
  • 841
  • 842
  • 843
  • 844
  • 845
  • 846
  • 847
  • 848
  • 849
  • 850
  • 851
  • 852
  • 853
  • 854
  • 855
  • 856
  • 857
  • 858
  • 859
  • 860
  • 861
  • 862
  • 863
  • 864
  • 865
  • 866
  • 867
  • 868
  • 869
  • 870
  • 871
  • 872
  • 873
  • 874
  • 875
  • 876
  • 877
  • 878
  • 879
  • 880
  • 881
  • 882
  • 883
  • 884
  • 885
  • 886
  • 887
  • 888
  • 889
  • 890
  • 891
  • 892
  • 893
  • 894
  • 895
  • 896
  • 897
  • 898
  • 899
  • 900
  • 901
  • 902
  • 903
  • 904
  • 905
  • 906
  • 907
  • 908
  • 909
  • 910
  • 911
  • 912
  • 913
  • 914
  • 915
  • 916
  • 917
  • 918
  • 919
  • 920
  • 921
  • 922
  • 923
  • 924
  • 925
  • 926
  • 927
  • 928
  • 929
  • 930
  • 931
  • 932
  • 933
  • 934
  • 935
  • 936
  • 937
  • 938
  • 939
  • 940
  • 941
  • 942
  • 943
  • 944
  • 945
  • 946
  • 947
  • 948
  • 949
  • 950
  • 951
  • 952
  • 953
  • 954
  • 955
  • 956
  • 957
  • 958
  • 959
  • 960
  • 961
  • 962
  • 963
  • 964
  • 965
  • 966
  • 967
  • 968
  • 969
  • 970
  • 971
  • 972
  • 973
  • 974
  • 975
  • 976
  • 977
  • 978
  • 979
  • 980
  • 981
  • 982
  • 983
  • 984
  • 985
  • 986
  • 987
  • 988
  • 989
  • 990
  • 991
  • 992
  • 993
  • 994
  • 995
  • 996
  • 997
  • 998
  • 999
  • 1000

将验证集从原始的训练集中拆分出来

# 在pytorch中有一个比较简单但很常用的加载数据的方式就是先将文件夹创建好,然后文件夹名字为label,然后将这个label的训练数据放进去
# 这个函数的作用就是创建子文件夹,然后将图片搬过去
def copyfile(filename, target_dir):
    """文件复制到目标目录"""
    os.makedirs(target_dir, exist_ok=True)
    shutil.copy(filename, target_dir)

# 根目录:train_valid_test。下面有train文件夹,包含训练数据。valid包含验证数据,train_valid原始的train文件夹
def reorg_train_valid(data_dir, labels, valid_ratio):
    n = collections.Counter(labels.values()).most_common()[-1][1]
    n_valid_per_label = max(1, math.floor(n * valid_ratio))
    label_count = {}
    for train_file in os.listdir(os.path.join(data_dir, 'train')):
        label = labels[train_file.split('.')[0]]
        fname = os.path.join(data_dir, 'train', train_file)
        copyfile(
            fname,
            os.path.join(data_dir, 'train_valid_set', 'train_valid', label))
        if label not in label_count or label_count[label] < n_valid_per_label:
            copyfile(
                fname,
                os.path.join(data_dir, 'train_valid_test', 'valid', label))
        else:
            copyfile(
                fname,
                os.path.join(data_dir, 'train_valid_test', 'train', label))
    return n_valid_per_label
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
'
运行

在预测期间整理测试集,以方便读取

def reorg_test(data_dir):
    for test_file in os.listdir(os.path.join(data_dir, 'test')):
        copyfile(
            os.path.join(data_dir, 'test', test_file),
            os.path.join(data_dir, 'train_valid_test', 'test', 'unknown'))
  • 1
  • 2
  • 3
  • 4
  • 5
'
运行

调用前面定义的函数

def reorg_cifar10_data(data_dir, valid_ratio):
    labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
    reorg_train_valid(data_dir, labels, valid_ratio)
    reorg_test(data_dir)

batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_cifar10_data(data_dir, valid_ratio)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

图像增广

transform_train = torchvision.transforms.Compose([
    torchvision.transforms.Resize(40),  # 将图片放大到40*40
    torchvision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0),
                                             ratio=(1.0, 1.0)),  # 随机裁剪
    torchvision.transforms.RandomHorizontalFlip(),  # 水平调整
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465],
                                     [0.2023, 0.1994, 0.2010])])  # 对RGB三个channel

transform_test = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465],
                                     [0.2023, 0.1994, 0.2010])])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

读取由原始图像组成的数据集

train_ds, train_valid_ds = [
    torchvision.datasets.ImageFolder(
        os.path.join(data_dir, 'train_valid_test', folder),
        transform=transform_train) for folder in ['train', 'train_valid']]

valid_ds, test_ds = [
    torchvision.datasets.ImageFolder(
        os.path.join(data_dir, 'train_valid_test', folder),
        transform=transform_test) for folder in ['valid', 'test']]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

指定上面定义的所有图像增广操作

train_iter, train_valid_iter = [
    torch.utils.data.DataLoader(dataset, batch_size, shuffle=True,
                                drop_last=True)  # drop_last表示如果最后一个批量大小不够的话,就丢掉
    for dataset in (train_ds, train_valid_ds)]

valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False,
                                         drop_last=True)

test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False,
                                        drop_last=False)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

模型

def get_net():
    num_classes = 10
    net = d2l.resnet18(num_classes, 3)  # 3的意思就是RGB三通道 
    return net

loss = nn.CrossEntropyLoss(reduction="none")  # reduction=‘none’表示不要加起来
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

训练函数

def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
          lr_decay):  # lr_period,lr_decay,这里的意思就是每隔几次迭代学习率降低
    trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9,
                              weight_decay=wd)
    scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)  # 这个函数的作用就是每个多少个迭代,将学习率乘以lr_decay
    num_batches, timer = len(train_iter), d2l.Timer()
    legend = ['train loss', 'train acc']
    if valid_iter is not None:
        legend.append('valid acc')
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=legend)
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    for epoch in range(num_epochs):
        net.train()
        metric = d2l.Accumulator(3)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = d2l.train_batch_ch13(net, features, labels, loss,
                                          trainer, devices)
            metric.add(l, acc, labels.shape[0])
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(
                    epoch + (i + 1) / num_batches,
                    (metric[0] / metric[2], metric[1] / metric[2], None))
        if valid_iter is not None:
            valid_acc = d2l.evaluate_accuracy_gpu(net, valid_iter)
            animator.add(epoch + 1, (None, None, valid_acc))
        scheduler.step()  # 这里scheduler的原因就是之前已经将trainer给了schdeuler
    measures = (f'train loss {metric[0] / metric[2]:.3f}, '
                f'train acc {metric[1] / metric[2]:.3f}')
    if valid_iter is not None:
        measures += f', valid acc {valid_acc:.3f}'
    print(measures + f'\n{metric[2] * num_epochs / timer.sum():.1f}'
          f' examples/sec on {str(devices)}')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
'
运行

训练和验证模型

devices, num_epochs, lr, wd = d2l.try_all_gpus(), 20, 2e-4, 5e-4
lr_period, lr_decay, net = 4, 0.9, get_net()
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
      lr_decay)
  • 1
  • 2
  • 3
  • 4

对测试集进行分类并提交结果

net, preds = get_net(), []
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,
      lr_decay)

for X, _ in test_iter:
    y_hat = net(X.to(devices[0]))
    preds.extend(y_hat.argmax(dim=1).type(torch.int32).cpu().numpy())
sorted_ids = list(range(1, len(test_ds) + 1))
sorted_ids.sort(key=lambda x: str(x))
df = pd.DataFrame({'id': sorted_ids, 'label': preds})
df['label'] = df['label'].apply(lambda x: train_valid_ds.classes[x])
df.to_csv('submission.csv', index=False)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

实战Kaggle比赛:狗的品种识别(imageNet Dogs)

import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
  • 1
  • 2
  • 3
  • 4
  • 5

我们提供完整数据集的小规模样本

d2l.DATA_HUB['dog_tiny'] = (d2l.DATA_URL + 'kaggle_dog_tiny.zip',
                            '0cb91d09b814ecdc07b50f31f8dcad3e81d6a86d')

demo = True
if demo:
    data_dir = d2l.download_extract('dog_tiny')
else:
    data_dir = os.path.join('..', 'data', 'dog-breed-identification')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Downloading ../data/kaggle_dog_tiny.zip from http://d2l-data.s3-accelerate.amazonaws.com/kaggle_dog_tiny.zip...
  • 1

整理数据

def reorg_dog_data(data_dir, valid_ratio):
    labels = d2l.read_csv_labels(os.path.join(data_dir, 'labels.csv'))
    d2l.reorg_train_valid(data_dir, labels, valid_ratio)
    d2l.reorg_test(data_dir)

batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_dog_data(data_dir, valid_ratio)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

图片增广

transform_train = torchvision.transforms.Compose([
    torchvision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0),
                                             ratio=(3.0 / 4.0, 4.0 / 3.0)), 
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ColorJitter(brightness=0.4, contrast=0.4,
                                       saturation=0.4),  # 图像的明亮度等等
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])])

transform_test = torchvision.transforms.Compose([
    torchvision.transforms.Resize(256), 
    torchvision.transforms.CenterCrop(224),  # 从中心点copy一个224*224的图片
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
train_ds, train_valid_ds = [
    torchvision.datasets.ImageFolder(
        os.path.join(data_dir, 'train_valid_test', folder),
        transform=transform_train) for folder in ['train', 'train_valid']]

valid_ds, test_ds = [
    torchvision.datasets.ImageFolder(
        os.path.join(data_dir, 'train_valid_test', folder),
        transform=transform_test) for folder in ['valid', 'test']]

train_iter, train_valid_iter = [
    torch.utils.data.DataLoader(dataset, batch_size, shuffle=True,
                                drop_last=True)
    for dataset in (train_ds, train_valid_ds)]

valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False,
                                         drop_last=True)

test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False,
                                        drop_last=False)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

微调预训练模型

# 这个函数的作用就是将除了最后一层以外的参数不变,拿过来
def get_net(devices):
    finetune_net = nn.Sequential()
    finetune_net.features = torchvision.models.resnet34(pretrained=True)
    finetune_net.output_new = nn.Sequential(nn.Linear(1000, 256), nn.ReLU(),
                                            nn.Linear(256, 120))  # 这里我们在原来的输出后面加了几层
    finetune_net = finetune_net.to(devices[0])
    for param in finetune_net.features.parameters():
        param.requires_grad = False  # 这里的意思就是将卷积层的参数固定住,不更新他了,所以设置为false
    return finetune_net
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
'
运行

计算损失

loss = nn.CrossEntropyLoss(reduction='none')

def evaluate_loss(data_iter, net, devices):
    l_sum, n = 0.0, 0
    for features, labels in data_iter:
        features, labels = features.to(devices[0]), labels.to(devices[0])
        outputs = net(features)
        l = loss(outputs, labels)
        l_sum += l.sum()
        n += labels.numel()
    return l_sum / n
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

训练函数

def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
          lr_decay):
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    trainer = torch.optim.SGD(
        (param for param in net.parameters() if param.requires_grad), lr=lr,
        momentum=0.9, weight_decay=wd)  # 这里第一个参数的肆意就是将网络中需要更新的参数给他,不需要更新的参数我们就不更新了
    scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)
    num_batches, timer = len(train_iter), d2l.Timer()
    legend = ['train loss']
    if valid_iter is not None:
        legend.append('valid loss')
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=legend)
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(2)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            features, labels = features.to(devices[0]), labels.to(devices[0])
            trainer.zero_grad()
            output = net(features)
            l = loss(output, labels).sum()
            l.backward()
            trainer.step()
            metric.add(l, labels.shape[0])
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[1], None))
        measures = f'train loss {metric[0] / metric[1]:.3f}'
        if valid_iter is not None:
            valid_loss = evaluate_loss(valid_iter, net, devices)
            animator.add(epoch + 1, (None, valid_loss.detach()))
        scheduler.step()
    if valid_iter is not None:
        measures += f', valid loss {valid_loss:.3f}'
    print(measures + f'\n{metric[1] * num_epochs / timer.sum():.1f}'
          f' examples/sec on {str(devices)}')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
'
运行

训练和验证模型

devices, num_epochs, lr, wd = d2l.try_all_gpus(), 10, 1e-4, 1e-4
lr_period, lr_decay, net = 2, 0.9, get_net(devices)
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
      lr_decay)
  • 1
  • 2
  • 3
  • 4

对测试集分类

net = get_net(devices)
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,
      lr_decay)

preds = []
for data, label in test_iter:
    output = torch.nn.functional.softmax(net(data.to(devices[0])), dim=0)
    preds.extend(output.cpu().detach().numpy())
ids = sorted(
    os.listdir(os.path.join(data_dir, 'train_valid_test', 'test', 'unknown')))
with open('submission.csv', 'w') as f:
    f.write('id,' + ','.join(train_valid_ds.classes) + '\n')
    for i, output in zip(ids, preds):
        f.write(
            i.split('.')[0] + ',' + ','.join([str(num)
                                              for num in output]) + '\n')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/秋刀鱼在做梦/article/detail/928856
推荐阅读
相关标签
  

闽ICP备14008679号