赞
踩
转自http://www.cnblogs.com/en-heng/p/5013995.html
【十大经典数据挖掘算法】系列
决策树(decision tree)算法基于特征属性进行分类,其主要的优点:模型具有可读性,计算量小,分类速度快。决策树算法包括了由Quinlan提出的ID3与C4.5,Breiman等提出的CART。其中,C4.5是基于ID3的,对分裂属性的目标函数做出了改进。
决策树是一种通过对特征属性的分类对样本进行分类的树形结构,包括有向边与三类节点:
上图给出了(二叉)决策树的示例。决策树具有以下特点:
决策树学习的本质是从训练数据集中归纳出一组分类规则[2]。但随着分裂属性次序的不同,所得到的决策树也会不同。如何得到一棵决策树既对训练数据有较好的拟合,又对未知数据有很好的预测呢?
首先,我们要解决两个问题:
特征选择指选择最大化所定义目标函数的特征。下面给出如下三种特征(Gender, Car Type, Customer ID)分裂的例子:
图中有两类类别(C0, C1),C0: 6
是对C0类别的计数。直观上,应选择Car Type特征进行分裂,因为其类别的分布概率具有更大的倾斜程度,类别不确定程度更小。
为了衡量类别分布概率的倾斜程度,定义决策树节点的不纯度(impurity),其满足:不纯度越小,则类别的分布概率越倾斜;下面给出不纯度的的三种度量:
其中,表示对于决策树节点类别的概率。这三种不纯度的度量是等价的,在等概率分布是达到最大值。
为了判断分裂前后节点不纯度的变化情况,目标函数定义为信息增益(information gain):
对应于决策树节点的不纯度,表示分裂前的父节点,表示父节点所包含的样本记录数,表示父节点分裂后的某子节点,为其计数,为分裂后的子节点数。
特别地,ID3算法选取熵值作为不纯度的度量,则
指父节点对应所有样本记录的类别;表示选择的特征属性,即的集合。那么,决策树学习中的信息增益等价于训练数据集中类与特征的互信息,表示由于得知特征的信息训练数据集不确定性减少的程度。
在特征分裂后,有些子节点的记录数可能偏少,以至于影响分类结果。为了解决这个问题,CART算法提出了只进行特征的二元分裂,即决策树是一棵二叉树;C4.5算法改进分裂目标函数,用信息增益比(information gain ratio)来选择特征:
因而,特征选择的过程等同于计算每个特征的信息增益,选择最大信息增益的特征进行分裂。此即回答前面所提出的第一个问题(选择较优特征)。ID3算法设定一阈值,当最大信息增益小于阈值时,认为没有找到有较优分类能力的特征,没有往下继续分裂的必要。根据最大表决原则,将最多计数的类别作为此叶子节点。即回答前面所提出的第二个问题(停止分裂条件)。
ID3算法的核心是根据信息增益最大的准则,递归地构造决策树;算法流程如下:
C4.5算法流程与ID3相类似,只不过将信息增益改为信息增益比。
生成的决策树对训练数据会有很好的分类效果,却可能对未知数据的预测不准确,即决策树模型发生过拟合(overfitting)——训练误差(training error)很小、泛化误差(generalization error,亦可看作为test error)较大。下图给出训练误差、测试误差(test error)随决策树节点数的变化情况:
可以观察到,当节点数较小时,训练误差与测试误差均较大,即发生了欠拟合(underfitting)。当节点数较大时,训练误差较小,测试误差却很大,即发生了过拟合。只有当节点数适中是,训练误差居中,测试误差较小;对训练数据有较好的拟合,同时对未知数据有很好的分类准确率。
发生过拟合的根本原因是分类模型过于复杂,可能的原因如下:
为了解决过拟合,C4.5通过剪枝以减少模型的复杂度。[2]中提出一种简单剪枝策略,通过极小化决策树的整体损失函数(loss function)或代价函数(cost function)来实现,决策树的损失函数为:
其中,表示决策树的训练误差,为调节参数,为模型的复杂度。当模型越复杂时,训练的误差就越小。上述定义的损失正好做了两者之间的权衡。
如果剪枝后损失函数减少了,即说明这是有效剪枝。具体剪枝算法可以由动态规划等来实现。
[1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining.
[2] 李航,《统计学习方法》.
[3] Naren Ramakrishnan, The Top Ten Algorithms in Data Mining.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。