赞
踩
数据中台不是解决一切问题的“银弹”,它的成功是建立在信息化的基础上的,没有完善的信息化基础,企业就无法全面理解企业业务,更难以从中获取有用的信息。
一般来说,拥有多个事业部、多条产品线,需要在众多产品线中形成数据共享和复用的企业,可以最大化数据中台的投入产出。在多条产品线、多个业务部门形成数据合力之后,数据的作用将得以最大化。数据中台有两大好处。
即使是规模很小的企业也需要有正确的方法论和架构来建设自己的数字化运营体系,而数据中台正好提供了这样的方法论和架构。
数据中台建设的核心思路是赋能业务部门,提供更好的数据能力工具,使业务部门能够通过中台提供的功能快速获取商业洞见,从而快速提供数据驱动的业务产品。因此,脱离了业务应用,数据中台的建设就是空中楼阁,我们在规划数据中台建设的时候,要有业务应用的场景,后续的迭代必须由真正的业务需求来驱动。
数据中台有如下的核心能力:
数据中台在各个行业的应用场景和案例来阐述数据中台的适用场景,能够更好地回答“数据中台究竟能给我们带来什么价值”这个问题:
举例阿里巴巴数据能力共享示意图:
【赋能决策部门】: 在数字化运营的企业里,数据对于决策层的重要性不言而喻,日益普遍的CDO(首席数据官)和 CDS(首席数据科学家)职位的设置就是很好的证明。2o15 年,美国政府将来自 LinkedIn 的数据科学家 DJ Patil 任命为白宫的 CDS,就是希望他在互联网企业的数据经验能够帮助政府和其他行业做出更科学的决策。对于企业的管理决策层而言,数据中台可以为其赋予五大能力:
**【赋能业务部门】:**对于业务部门来讲,它们对数据中台的需求贯穿了整个产品生命周期。数据中台能够为业务部门带来如下能力。
**【赋能研发部门】:**产品研发部门希望能集中精力在业务逻辑的开发上而无须考虑数据处理的细节,因此数据中台应当具备与 DaaS (Data as a Service)平台相似的能力:
【赋能大数据部门】: 在数据中台的建设中,大数据部门处于核心位置,但是大数据部门的工作除了搭建大数据基础能力平台之外,更要侧重于全局的数据能力统一管理和赋能。传统大数据团队的主要任务一般如下:
而在数据中台的运营中,大数据部门除了上述工作之外,还需要建立数据标准并确保数据标准的执行;
本文是《云原生数据中台:架构、方法论与实践》的读书笔记,谢谢大家的阅读,本文完!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。