赞
踩
1、确定问题状态
2、转移方程,把问题方程化
3、按照实际逻辑设置初始条件和边界情况
4、确定计算顺序并求解
结合实例感受下:
你有三种硬币,分别面值2元,5元和7元,每种硬币都有足够多。买一本书需要27元。如何用最少的硬币组合正好付清,不需要对方找钱?
关键词“用最小的硬币组合正好付清”——“最小的组合”,求最值问题,动态规划。
**正常人第一反应思路:**最少硬币组合?优先使用大面值硬币——7+7+7+5=26 额?可求解目标是27啊……改算法——7+7+7+2+2+2=27,总共用了6枚硬币正好27元.实际正确答案:7+5+5+5+5=27,才用了5枚硬币。所以这里贪心算法是不正确的。
套路用起来:
动态规划问题求解需要先开一个数组,并确定数组的每个元素f[i]代表什么,就是确定这个问题的状态。类似于解数学题中,设定X,Y,Z代表什么。
A、确定状态首先提取【最后一步】
最优策略必定是K枚硬币a1, a2,…, aK 面值加起来是27。
找出不影响最优策略的最后一个独立角色,这道问题中,那枚最后的硬币“aK”就是最后一步。把aK提取出来,硬币aK之前的所有硬币面值加总是27- aK因为总体求最硬币数量最小策略,所以拼出27- aK 的硬币数也一定最少(重要设定)。
B、**转化子问题。**最后一步aK提出来之后,我们只要求出“最少用多少枚硬币可以拼出27- aK”就可以了。
这种与原问题内核一致,但是规模变小的问题,叫做子问题。
为简化定义,我们设状态f(X)=最少用多少枚硬币拼出总面值X。我们目前还不知道最后的硬币aK面额多少,但它的面额一定只可能是2/5/7之一。如果aK是2,f(27)应该是f(27-2) + 1 (加上最后这一枚面值2的硬币)如果aK是5,f(27)应该是f(27-5) + 1 (加上最后这一枚面值5的硬币)如果aK是7,f(27)应该是f(27-7) + 1 (加上最后这一枚面值7的硬币)除此以外,没有其他的可能了。
至此,通过找到原问题最后一步,并将其转化为子问题。为求面值总额27的最小的硬币组合数的状态就形成了,用以下函数表示:
f(27) = min{f(27-2)+1, f(27-5)+1, f(27-7)+1}
f[X] = min{f[X-2]+1, f[X-5]+1, f[X-7]+1}(动态规划都是要开数组,所以这里改用方括号表示)
实际面试中求解动态规划类问题,正确列出转移方程正确基本上就解决一半了。
但是请问:这与递归有什么不同??
递归的解法:
// f(X)返回最少用多少枚硬币拼出Xint f(int X) {// 0元钱只要0枚硬币if (X == 0) return 0;// 初始化用无穷大(为什么是正无穷?)int res = MAX_VALUE;// 最后一枚硬币是2元if (X >= 2) {res = Math.min(f(X – 2) + 1, res);}// 最后一枚硬币是5元if (X >= 5) {res = Math.min(f(X – 5) + 1, res);}// 最后一枚硬币是7元if (X >= 7) {res = Math.min(f(X – 7) + 1, res);}return res;}
执行图如下:
要算f(27),就要递归f(25)、f(22)、f(20),然后下边依次递归……(三角形表示)。
问题明显——重复递归太多。
这是求f(27),还可以勉强递归。如果求f(100)呢?简直是天文数字。最终结果就是递归超市。
求总体最值,一定优先考虑动态规划不要憨憨的去递归。
插入一下~
需要掌握的动态规划面试解题技巧还包括坐标型、位操型、序列型、博弈型、背包型、双序列以及一些高难面试题解。
本文篇幅有限无法逐一讲清,大家来白嫖我的在线分享吧(纯干货)。
**【必做】**否则即使转移方程正确也大概率无法跑通代码。
f[X] = min{f[X-2]+1, f[X-5]+1, f[X-7]+1}的边界情况是[x-2]/[x-5]/[x-7]不能小于0(硬币面值为正),也不能高于27。
故对边界情况设定如下:
如果硬币面值不能组合出Y,就定义f[Y]=正无穷例如f[-1]=f[-2]=…=正无穷;f[1] =min{f[-1]+1, f[-4]+1,f[-6]+1}=正无穷,
**特殊情况:**本题的F[0]对应的情况为F[-2]、F[-5]、F[-7],按照上文的边界情况设定结果是正无穷。
但是实际上F[0]的结果是存在的(即使用0个硬币的情况下),F[0]=0。可是按照我们刚刚的设定,F[0]=F[0-2]+1= F[-2]+1=正无穷。
岂不是矛盾?
这种用转移方程无法计算,但是又实际存在的情况,就必须通过手动定义。
这里手动强制定义初始条件为:F[0]=0.
而从0之后的数值是没矛盾的,比如F[1]= F[1-2]+1= F[-1]+1=正无穷(正无穷加任何数结果还是正无穷);F[2]= F[2-2]+1= F[0]+1=1……
那么开始计算时,是从F[1]、F[2]开始呢?还是从F[27]、F[26]开始呢?
判断计算顺序正确与否的原则是:当我们要计算F[X](等式左边,如F[10])的时候,等式右边(f[X-2], f[X-5], f[X-7]等)都是已经得到结果的状态,这个计算顺序就是OK的。
实际就是从小到大的计算方式(偶有例外的情况我们后边再讲)。
例如我们算到F[12]的时候,发现F[11]、F[10]、F[9]都已经算过了,这种算法就是对的;而开始算F[27]的时候,发现F[26]还没有算,这样的顺序就是错的。
很显然这样的情况下写一个FOR循环就够了。
回到这道题,采用动态规划的算法,每一步只尝试三种硬币,一共进行了27步。算法时间复杂度(即需要进行的步数)为27*3。
与递归相比,没有任何重复计算。
**原题练习及实际代码:**这道题是lintcode编号669的Coin Change问题。代码如下:
public int coinChange(int[] A, int M){// A = [2,5,7]// M = 27int[] f = new int[M + 1];int n = A.length; // 硬币的种类// 初始化, 0个硬币f[0] = 0;// f[1], f[2], ... , f[27] = Integer.MAX_VALUEfor (int i = 1; i <= M; i++){f[i] = Integer.MAX_VALUE;}for (int i = 1; i <= M; i++){// 使用第j个硬币 A[j]// f[i] = min{f[i-A[0]]+1, ... , f[i-A[n-1]]+1}for (int j = 0; j < n; ++j){// 如果通过放这个硬币能够达到重量iif (i >= A[j] && f[i - A[j]] != Integer.MAX_VALUE) {// 获得i的重量的硬币数就可能是获得i-A[j]重量硬币数的方案+1// 拿这个方案数量与原本的方案数打擂台,取最小值就行f[i] = Math.min(f[i - A[j]] + 1, f[i]);}}}if (f[M] == Integer.MAX_VALUE){return -1;}return f[M];}
最后总结:
1、这是求最值问题,用动态规划方式求解。2、进入求解过程,先确定问题状态
实际上按照以上4步套路,基本上可以应对绝对大多数的动态规划面试题。
2020年在匆匆忙忙慌慌乱乱中就这么度过了,我们迎来了新一年,互联网的发展如此之快,技术日新月异,更新迭代成为了这个时代的代名词,坚持下来的技术体系会越来越健壮,JVM作为如今是跳槽大厂必备的技能,如果你还没掌握,更别提之后更新的新技术了。
更多JVM面试整理:
壮,JVM作为如今是跳槽大厂必备的技能,如果你还没掌握,更别提之后更新的新技术了。
[外链图片转存中…(img-69TbfAMR-1625824746026)]
更多JVM面试整理:
[外链图片转存中…(img-wih3LmA8-1625824746027)]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。