赞
踩
第一:预测的概念预测就是在事情发生以前,分析过去、现在的变化,对未来发展的可能性作出估计和推测,以指导人们的行动。
第二:经济预测的类型1、定性经济预测:定性经济预测是在数据资料掌握不多的情况下,依靠人的经验和分析能力,用系统的逻辑的思维方法,把有关资料加以综合,对未来经济发展的趋向作出判断进行预测的方法。
定性预测法包括特尔斐法、主观概率预测法、判断预测法等方法。定性预测法强调对事物发展的特性进行描述性地预测。定性预测法灵活性较强,用定性预测法预测简单迅速,可节省一定的人力、物力和财力。
2、定量经济预测:定量经济预测是指运用经济统计的数据资料,根据预测经济变量之间的关系,建立经济预测模型,外推出预测值。定量经济预测法根据使用数据的不同性质又分为时间序列预测法和因果模型预测法。
3、宏观预测与微观预测4、长、中、短期预测 第三:预测的方法1、专家预测法2、指数平滑法3、Box-Jenkins预测方法4、回归分析法5、灰色预测方法6、组合预测方法7、人工神经网络预测法8、其他预测方法。
谷歌人工智能写作项目:神经网络伪原创
第一:预测的概念预测就是在事情发生以前,分析过去、现在的变化,对未来发展的可能性作出估计和推测,以指导人们的行动写作猫。
第二:经济预测的类型1、定性经济预测:定性经济预测是在数据资料掌握不多的情况下,依靠人的经验和分析能力,用系统的逻辑的思维方法,把有关资料加以综合,对未来经济发展的趋向作出判断进行预测的方法。
定性预测法包括特尔斐法、主观概率预测法、判断预测法等方法。定性预测法强调对事物发展的特性进行描述性地预测。定性预测法灵活性较强,用定性预测法预测简单迅速,可节省一定的人力、物力和财力。
2、定量经济预测:定量经济预测是指运用经济统计的数据资料,根据预测经济变量之间的关系,建立经济预测模型,外推出预测值。定量经济预测法根据使用数据的不同性质又分为时间序列预测法和因果模型预测法。
3、宏观预测与微观预测4、长、中、短期预测第三:预测的方法1、专家预测法2、指数平滑法3、Box-Jenkins预测方法4、回归分析法5、灰色预测方法6、组合预测方法7、人工神经网络预测法8、其他预测方法。
管理学的三个发展阶段:(一)兴起阶段:二战后初期到1973年,这一时期的特点是注重从概念体系上建立比较管理学的理论模式,着重研究如何把先进国家的管理转移到发展中国家,以促进其经济的发展。
(二)低潮阶段:1973年到70年代末。
这一时期由于受世界性石油危机极其触发的经济危机的影响,使研究经费来源枯竭;还有由于比较管理学受当时流行的一般系统论的影响的启迪,而一般系统论的衰退,对比较管理理论也受到一定的影响。
(三)高潮阶段:80年代初—?。以四部管理著作:《Z理论》《日本企业管理艺术》《公司文化》《成功之路》为标志。
在这一过程中,出现了些与前两个阶段不同的特点:运用企业文化理论进行比较管理理论研究,并取得重大成果;对企业内部管理要素和方式的研究有了新的突破,并探讨设计了分析内部管理要素的模型,试图为比较研究理论研究提供新的科学的分析工具;研究重点由过去的以概念分析为主转向以实践为主,增加了研究成果的价值。
管理学的特点:一般说来,管理学具有这样几个特点(1)一般性。管理学作为一般管理学,它区别于"宏观管理学"和"微观管理学"。
它是研究所有管理活动中的共性原理的基础理论学科,无论是"宏观管理"还是"微观管理",都需要管理学的原理作为基础来加以学习和研究。管理学是各门具体的或专门的管理学科的共同基础。(2)多科性,或综合性。
管理学的综合性表现为:在内容上,它需要从社会生活的各个领域、各个方面以及各种不同类型组织的管理活动中概括和抽象出对各门具体管理学科都具有普遍指导意义的管理思想、原理和方法;在方法上,它需要综合运用现代社会科学、自然科学和技术科学的成果,来研究管理活动过程中普遍存在的基本规律和一般方法。
管理活动是很复杂的活动,影响这一活动的因素是多种多样的。
搞好管理工作,必须考虑到组织内部和组织外部的多种错综复杂的因素,利用经济学、数学、生产力经济学、工程技术学、心理学、生理学、仿真学、行为科学等的研究成果和运筹学、系统工程、信息论、控制论、电子计算机等最新成就,对管理进行定性的描述和定量的预测,从中研究出行之有效的管理理论,并用以指导管理的实际工作。
所以从管理学与许多学科相互关系来看,可以说,管理学是一门交叉学科或边缘学科,但从它又要综合利用上述多种学科的成果,才能发挥自己的作用来看,它又是一门综合性的学科。(3)历史性。
任何一种理论都是实践和历史的产物,管理学尤其如是。管理学是对前人管理实践、经验和管理思想、理论的总结、扬弃和发展。
割断历史,不了解管理历史发展和前人对管理经验的理论总结,不进行历史考察,就很难理解建立管理学的依据。(4)实用性,或实践性。管理学是为管理者提供从事管理的有用的理论、原则和方法的实用性学科。
管理的实践性表现为它具有可行性,而它的可行性标准是通过经济效益和社会效益来加以衡量的。因此,管理学又是一门实用学科,只有把管理理论同管理实践相结合,才能真正发挥这门学科的作用。
第一:预测的概念预测就是在事情发生以前,分析过去、现在的变化,对未来发展的可能性作出估计和推测,以指导人们的行动。
第二:经济预测的类型1、定性经济预测:定性经济预测是在数据资料掌握不多的情况下,依靠人的经验和分析能力,用系统的逻辑的思维方法,把有关资料加以综合,对未来经济发展的趋向作出判断进行预测的方法。
定性预测法包括特尔斐法、主观概率预测法、判断预测法等方法。定性预测法强调对事物发展的特性进行描述性地预测。定性预测法灵活性较强,用定性预测法预测简单迅速,可节省一定的人力、物力和财力。
2、定量经济预测:定量经济预测是指运用经济统计的数据资料,根据预测经济变量之间的关系,建立经济预测模型,外推出预测值。定量经济预测法根据使用数据的不同性质又分为时间序列预测法和因果模型预测法。
3、宏观预测与微观预测4、长、中、短期预测第三:预测的方法1、专家预测法2、指数平滑法3、Box-Jenkins预测方法4、回归分析法5、灰色预测方法6、组合预测方法7、人工神经网络预测法8、其他预测方法。
优点:(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。(3)具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
缺点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。
(3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。(4)理论和学习算法还有待于进一步完善和提高。
扩展资料:神经网络发展趋势人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。
人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。
近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。
将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。
神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。
其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。
由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。
目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。参考资料:百度百科-人工神经网络。
灰色模型从灰色系统中抽象出来的模型。灰色系统是既含有已知信息,又含有未知信息或非确知信息的系统,这样的系统普遍存在。
研究灰色系统的重要内容之一是如何从一个不甚明确的、整体信息不足的系统中抽象并建立起一个模型,该模型能使灰色系统的因素由不明确到明确,由知之甚少发展到知之较多提供研究基础。
灰色系统理论是控制论的观点和方法延伸到社会、经济领域的产物,也是自动控制科学与运筹学数学方法相结合的结果。糊性数学研究和处理模糊性现象的数学理论和方法。
1965年美国控制论学者L.A.扎德发表论文《模糊集合》,标志着这门新学科的诞生。现代数学建立在集合论的基础上。一组对象确定一组属性,人们可以通过指明属性来说明概念,也可以通过指明对象来说明。
符合概念的那些对象的全体叫做这个概念的外延,外延实际上就是集合。一切现实的理论系统都有可能纳入集合描述的数学框架。
经典的集合论只把自己的表现力限制在那些有明确外延的概念和事物上,它明确地规定:每一个集合都必须由确定的元素所构成,元素对集合的隶属关系必须是明确的。
对模糊性的数学处理是以将经典的集合论扩展为模糊集合论为基础的,乘积空间中的模糊子集就给出了一对元素间的模糊关系。对模糊现象的数学处理就是在这个基础上展开的。
从纯数学角度看,集合概念的扩充使许多数学分支都增添了新的内容。例如不分明拓扑、不分明线性空间、模糊测度与积分、模糊群、模糊范畴、模糊图论等。其中有些领域已有比较深入的研究。
模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。
例如模糊聚类分析、模糊综合评判、模糊决策、模糊控制等。
这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。
模糊性数学最重要的应用领域应是计算机智能。它已经被用于专家系统和知识工程等方面。神经网络是:人的思维有逻辑性和直观性两种不同的基本方式。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:(1)生物原型研究。
从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。
其中包括概念模型、知识模型、物理化学模型、数学模型等。(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。
这方面的工作也称为技术模型研究。(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。
然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。
这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
数据挖掘(DataMining)是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。
换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
原则上讲,数据挖掘可以应用于任何类型的信息存储库及瞬态数据(如数据流),如数据库、数据仓库、数据集市、事务数据库、空间数据库(如地图等)、工程设计数据(如建筑设计等)、多媒体数据(文本、图像、视频、音频)、网络、数据流、时间序列数据库等。
也正因如此,数据挖掘存在以下特点:(1)数据集大且不完整数据挖掘所需要的数据集是很大的,只有数据集越大,得到的规律才能越贴近于正确的实际的规律,结果也才越准确。除此以外,数据往往都是不完整的。
(2)不准确性数据挖掘存在不准确性,主要是由噪声数据造成的。比如在商业中用户可能会提供假数据;在工厂环境中,正常的数据往往会收到电磁或者是辐射干扰,而出现超出正常值的情况。
这些不正常的绝对不可能出现的数据,就叫做噪声,它们会导致数据挖掘存在不准确性。(3)模糊的和随机的数据挖掘是模糊的和随机的。这里的模糊可以和不准确性相关联。
由于数据不准确导致只能在大体上对数据进行一个整体的观察,或者由于涉及到隐私信息无法获知到具体的一些内容,这个时候如果想要做相关的分析操作,就只能在大体上做一些分析,无法精确进行判断。
而数据的随机性有两个解释,一个是获取的数据随机;我们无法得知用户填写的到底是什么内容。第二个是分析结果随机。数据交给机器进行判断和学习,那么一切的操作都属于是灰箱操作。
神经网络:神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。
联系:都是模仿人类行为的数学模型以及算法。神经网络的研究能促进或者加快人工智能的发展。
区别如下:一、指代不同1、人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
2、神经网络:是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
二、方法不同1、人工智能:企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
2、神经网络:依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。三、目的不同1、人工智能:主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
2、神经网络:具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。
参考资料来源:百度百科-人工智能参考资料来源:百度百科-神经网络。
财务管理咨询的分析模型由三部分组成。1.战略性分析。
侧重对企业的外部环境展开,目的是掌握以下情况:(1)企业所处行业的特征;(2)企业的特征;(3)企业所从事和可能从事的各战略经营领域的成功关键是什么,发展速度如何,资金利润率是多少,为建立战略优势所需要的最佳经济规模是多少,平均投资额是多少;(4)企业所从事和可能从事的各战略经营领域中,成本居于何战略地位,行业的平均和先进水平是什么;(5)企业的筹资环境特征,包括供求形势、筹资条件、行业与融资机构的一般关系以及同行业竞争者的筹资能力和财政实力;(6)同行业竞争者资金筹措与运用效果,包括资金效益性、资金流动性、资金安全性。
战略性分析的任务是把握企业一般环境、行业环境和金融环境的风险度,成功关键因素,机遇和威胁,为企业的财务管理体系提供筹资、投资和成本管理方面客观的参照标准。2.执行性分析。
它侧重对企业财务系统展开,目的是掌握以下情况:(1)企业财务管理体制的现状;(2)企业资金流动运行及其功能现状(效益性、流动性、安全性);(3)企业筹资和投资工作及其管理的现状;(4)企业成本及成本管理的现状;(5)改进企业财务管理现状的条件。
执行性分析的任务是把握企业财务系统的特点、成熟程度、优势和劣势、在资金管理和成本管理方面的关键问题,并把握改善财务系统功能的可行因素。3.设计改善方案。
这里所述的改善方案是对企业整个财务系统提出的综合改善方案。改善方案包括两部分:财务的战略方针和财务的战术管理体系。财务预警模型是诊断企业财务状况、提供财务危机信号的得力帮手,研究它无疑具有积极的意义。
本文试图对目前国内外多种财务预警模型进行比较分析,以为构建适合我国企业财务预警模型提供一些思路和方法。
一、财务预警模型的分类简介(一)单变量模型单变量模型是指运用单一变数,用个别财务比率或现金流量指标来预测财务危机的方法。
Fitzpatrick最早研究发现,出现财务困境的公司其财务比率和正常公司相比有显著的不同,从而认为企业的财务比率能够反映企业的财务状况,并指出财务比率分别对企业未来具有预测作用。
Beaver在此基础上用统计方法建立了单变量财务预警模型,发现债务保障比率对公司的预测效果较好,其次是资产收益率和资产负债率的预测效果。
另外,日本的田边升一提出了利息及票据贴现费用的单变量判别分析方法,以利息及票据贴现费用的大小来判断企业正常与否,从而也可对企业起预测作用。
(二)多变量模型多变量模型就是运用多个财务指标或现金流量指标来综合反映企业的财务状况,并在此基础上建立预警模型,进行财务预测。
按所建模型是否具有动态预警能力、财务预警系统是否易于修改和扩充,多变量模型又可以分为静态统计模型和动态非统计模型。1.静态统计模型。①线性判别模型。
多元线性判别模型是运用多元统计分析方法中的判别分析建立起来的,它是根据一定的样本资料,建立判别函数、确定判定区域,以对企业财务状况进行预测。这种模型以美国Atlman教授的Z模型最具代表性。
②主成分预测模型。该模型也形成一个线性判定函数式,其形式类似判别分析模型。不过该模型是运用多元统计分析中的主成分分析方法,通过提炼综合因子形成主成分,并利用主成分建立起来的。
我国学者张爱民、杨淑娥等分别运用主成分分析方法对我国上市公司的财务预警模型进行过研究。③简单线性概率模型。该模型是利用多元线性回归方法建立起来的,其形式是:y=c+β1x1+β2x2+…+βkxk。
其中:c、β1、β2、…、βk为系数;x1、x2、…、xk为k个预测变量,即财务指标;y为企业财务失败的概率。
该模型以0.5为危机分界点,y值越大,企业发生财务失败的可能性越大,y值越接近于0,说明企业财务越安全。④logit模型和probit模型。
它们也分别叫作对数比率模型和概率单位模型,都属于概率模型,是在克服简单的线性概率模型的基础上并分别用logit和probit概率函数建立起来的。
logit模型的形式为:ln〔p÷(1-p)〕=α0+β1x1+β2x2+…+βkxk。
其中:p取值为0、1;p为概率;x1,x2,…,xk为k个预测变量,即财务指标;α0、β1、β2、…、βk为系数。probit概率模型的预测效果一般与logit模型预测的效果相差不大,在此不多加介绍。
2.动态非统计模型。动态财务预警模型主要是把人工智能中的归纳式学习的方法应用于财务危机预测。目前,这种方法中最常用的是神经网络预测模型。
在神经网络模型中,当输入一些资料后,网络会以目前的权重计算出相对应的预测值以及误差,而再将误差值回馈到网络中调整权重,经过不断地重复调整,从而使预测值渐渐地逼近真实值。
当应用此网络到新的案例时,只要输入新案例的相关数值,神经网络就可以根据当时的权重得出输出值即预测值。神经网络分析是一种并行分布模式处理系统,具有高度的计算能力、自学能力和容错能力。
该模型由一个输入层、若干个中间层和一个输出层构成。案例推理法是近年来才被尝试应用于财务危机预测上的一种动态非统计模型方法。
它是一种依循经验来推理的方法,就是以过去发生的案例为主要的经验依据来判断未来可能发生的问题,是一种典型的“上一次当,学一次乖”的推理方法。
当输入一个新的问题到案例推理法系统,该系统会在从现有的案例库中搜寻相似的案例,判断新案例的类型。
案例推理法的关键步骤就是根据相似性演算法测算出案例之间距离,再转变为案例之间的相似度,由相似度选取最相近的案例,据此进行推理判断。
二、各类财务预警模型的比较(一)单变量模型和多变量模型的比较1.单变量模型方法简单,多变量模型方法较为复杂。
单变量模型只对单个财务比率进行分析考察,观察企业发展变化趋势,据此来判断企业财务状况,不需要进行复杂的计算。
而多变量模型均同时选取多个财务指标或现金流量指标,再通过一定的方法进行综合分析,模型的构建涉及多种方法和理论,操作比较复杂。2.和多变量模型相比,单变量模型分析存在较多的局限性。
①不同的财务比率的预测目标和能力经常有较大的差距,容易产生对于同一公司使用不同比率预测出不同结果的现象。②单个指标分析得出的结论可能会受到一些客观因素的影响,如通货膨胀等的影响。
③它只重视对个别指标影响力的分析,容易受管理人员粉饰会计报表、修饰财务指标、掩盖财务危机的主观行为的影响,以致模型判断失效。
而多变量模型由于综合考虑了反映公司财务环境包括财务危机状况的多个方面的因素,反映的是基本的和整体、全局的状况,因此能比单变量模型更好地避免上述情况的发生。
(二)静态统计模型和动态非统计模型的比较1.建立模型的方法。两者在建立模型的方法上存在着显著的差别。
静态统计模型均是在利用统计数理和分析的基础上建立起来,如多元统计分析方法中的判别分析、主成分分析以及计量经济中的回归分析等。
这些模型的建立均有一定的统计理论依据,均涉及到判定区间的确定和误判率的估计问题,并且建立的一般是线性模型。
而动态非统计模型不是依据统计理论,而是利用人工智能中归纳式学习的方法建立起来的,整个分析及预测过程就好像是人类学习及思考一样。它是一种自然的非线性模型。2.模型建立的假定条件。
静态统计模型的建立一般都对样本数据的分布作一定的假设,并以假设作为前提条件。如,多元统计分析中的数据正态分布假设、协方差矩阵相等假设、简单线性概率模型的二项分布假设等。
一般来说,只有在这些假设条件基本得到满足的情况下,才能保证静态统计模型预测的准确性。
另外,静态统计模型的建立是以对数据之间的关系已有清醒的认识为基础的,一般假定各变量之间为简单的线性关系,并且比较注重数据本身的完整性及一致性。
而动态非统计模型一般没有数据的分布、结构等方面的要求,适用于非线性关系的数据并对数据的缺失具有相当的容许性,基本上能处理任意类型的数据。3.是否具有动态预警功能和容错性。
静态统计模型只是根据以前的样本资料建立起来的,样本资料一旦确定,便难以再予调整,除非重新建立模型。
随着财务状况的发展和财务标准的更新,这种按照以前的资料、标准建立起来的模型难以对已经变化了的财务状况作出准确的预测和判断,即这种模型不具有动态预警能力,不易修改和扩充。
并且,静态统计模型对错误资料的输入不具有容错性,无法自我学习和调整。而动态非统计模型具备随着不断变化的环境进行自我学习的能力,随着样本资料的积累,可以定期更新知识,从而实现对企业危机的动态预警。
并且,由于动态预警模型具有高度的自我学习能力,对错误资料的输入具有很强的容错性,因而更具有实用价值。4.实际应用。
动态模型如神经网络模型等的分布是自由的,当变量从未知分布取出和协方差结构不相等(企业失败样本中的常态)时,神经网络能够提供准确的分类。
但是,它在实际运用中还存在一些问题,如模型的拓扑定义、网络架构的决定、学习参数以及转换公式的选择等比较复杂和难以确定,其工作的随机性较强,非常耗费人力与时间,而且其在决策方法中表现得像一个黑匣子,以致对它的接受和应用都较困难。
另外,这种模型要求拥有大量的学习训练样本以供分析,如果样本数量积累得不足、没有足够的代表性和广泛的覆盖面,则会大大地影响系统的分析和预测的结果。
Altman(1995)在对神经网络法和判别分析法的比较研究中得出结论:“神经网络分析方法在风险识别和预测中的应用并没有实质性地优于线性判别模型”。
而传统的统计模型发展得比较成熟,计算也相对简单,应用也较为广泛。
并且某些统计方法,如:logit、probit模型对数据是否具备正态分布、两组协方差是否相等也没有要求,常用的判别分析中的距离判别方法也可以在两总体协方差矩阵不相等的情况下使用。
因此,目前在财务预警模型方面仍然以传统的统计方法为主,而动态模型尚不够成熟,对它的应用仍处于探索、实验阶段。(三)各种统计模型之间的比较1.各种统计方法本身功能的比较。
判别分析和主成分分析方法属于多元统计分析,其中,判别分析方法主要研究在已知研究对象分成若干类型并已取得各类样品观测数据的基础上,如何判别一个新样品的归类问题,即判别分析的宗旨就是判断新的案例的类别。
主成分分析方法的主要功能是为了解决样本数据中指标个数太多以及指标间信息存在重复的问题,其作用有两个:一是降维,二是减少信息的重复,从而使分析简化。
简单的线性概率模型和logit概率模型都属于回归分析方法,其目的是研究模型中各解释变量与被解释变量之间的特定的关系,尤其是数值关系。
所以,若只从各种方法的主要功能来说,利用判别分析方法建立财务预警模型是最适当的,因为这种方法就是研究类别归属问题。2.各种统计方法建立财务预警模型的比较。
判别分析方法的核心就是根据距离的远近来判断样品的归属,通常形成一个线性判定函数式,据此判断待判企业的归属。一般要求数据服从正态分布和两组总体间协方差矩阵相等。
主成分分析方法主要是对多维财务指标进行综合、降维,然后给各综合指标赋予一定的权值再进行综合分析,形成一个判分式,根据财务正常企业和财务失败企业各自得分情况形成判定区间,计算出待判企业的得分,据此加以判断。
利用主成分分析方法建立财务预警模型有一个明显的缺陷:即综合评分式权重的确定以及判定区间的确定都具有较大的主观性和不准确性,尤其是后者受样本数据分布的影响很大。
简单线性概率模型就是以各财务指标作为解释变量,以财务状况作为被解释变量,将财务状况分为正常和失败,分别取0和1,利用样本资料建立回归方程,把待判企业财务指标数据代入方程,求得的值即为预测值,代表该企业发生财务失败的可能性。
简单线性概率模型有四个缺陷:①残差不满足正态分布,而是二项分布;②具有异方差;③一般样本决定系数太小,回归方程拟合程度低;④难以保证回归值在〔0,1〕区间,因此,用此方法建立的财务预警模型,其预警判别能力不如其他方法。
Logit和probit模型均是为了克服简单的线性概率模型的缺陷而建立起来的,一般采用最大似然估计方法进行估计,不需要满足正态分布和两组协方差矩阵相等的条件,得出的结果直接表示企业发生财务失败的可能性大小,操作简单,结果明了。
此方法目前被广泛运用。根据有关学者对多种统计模型判别准确率的比较研究,得知判别分析方法是20世纪80年代以前主要的建模方法,其预测的准确率一直较高,并且是到目前为止被运用的主要方法之一。
Altman2000年用判别分析方法建立的预警模型,其预测精度仍高达96%。logit预测模型近年来也被广泛地运用,其预测精度也相对较高。
我国学者吴世农、卢贤义建立的财务预警模型具有样本新、容量大的特点,他们在2001年对经过严格检验的同一套样本指标分别用判别分析方法和logit方法进行财务预测,结果发现logit模型的预测精度(93.6%)要明显优于判别分析方法的预测精度(89.9%)。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。