赞
踩
在机器学习中,经常听到一个词:“模型训练”,不禁疑惑:模型是什么东西?怎么样训练的?训练后得到的结果是什么?
下面用图简单描述个人理解:
在人工智能中,面对大量用户输入的数据/素材,如果要在杂乱无章的内容准确、容易地识别,输出我们期待输出的图像/语音,并不是那么容易的。因此算法就显得尤为重要了。算法就是我们所说的模型。
当然,算法的内容,除了核心识别引擎,也包括各种配置参数,例如:语音智能识别的比特率、采样率、音色、音调、音高、音频、抑扬顿挫、方言、噪音等乱七八糟的参数。成熟的识别引擎,核心内容一般不会经常变化的,为实现”识别成功“这一目标,我们只能对配置参数去做调整。对于不同的输入,我们会配置不同参数值,最后在结果统计取一个各方比较均衡、识别率较高的一组参数值,这组参数值,就是我们训练后得到的结果,这就是训练的过程,也叫模型训练。
所以:
模型 = 算法
训练 = 为达成高识别率的目标,使用大数据,找出最优配置参数的过程
结果 = 确定参数配置,实现高识别率
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。