当前位置:   article > 正文

OpenCV 4基础篇| OpenCV图像的拼接_opencv 拼接

opencv 拼接

1. Numpy (np.hstack,np.vstack)

语法结构:

retval = np.hstack(tup) # 水平拼接
retval = np.vstack(tup) # 垂直拼接
  • 1
  • 2
  • tup:一个包含多个数组的元组((img1, img2, …))。这些数组将被水平堆叠(即沿第二个轴拼接)。
  • retval:拼接后的图像,nparray 多维数组

1.1 注意事项

  • np.hstack() 按水平方向(列顺序)拼接 2个或多个图像,图像的高度(数组的行)必须相同。
  • np.vstack()按垂直方向(行顺序)拼接 2个或多个图像,图像的宽度(数组的列)必须相同。
  • 综合使用 np.hstack()np.vstack() 函数,可以实现图像的矩阵拼接。
  • np.hstack()np.vstack() 只是简单地将几张图像直接堆叠而连成一张图像,并未对图像进行特征提取和边缘处理,因而并不能实现图像的全景拼接。

1.2 代码示例

import cv2
import numpy as np

img = cv2.imread("./img/lena.jpg")
img = cv2.resize(img, None, fx=0.5, fy=0.5)    #为了完整显示,缩小一倍
blur2 = cv2.blur(img, (2,2))#模糊处理
blur3 = cv2.blur(img, (5,5))
blur4 = cv2.blur(img, (10,10))

htich = np.hstack((img,blur2))
htich2 = np.hstack((blur3,blur4))
vtich = np.vstack((htich, htich2))

cv2.imshow("mergedDemo", vtich)
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

1

2. matplotlib

2.1 注意事项

  • opencv使用的是BGR模式,而matplotlib使用的是RGB模式,所以需要将opencv中的BGR、GRAY格式转换为RGB,使matplotlib中能正常显示opencv的图像。

2.2 代码示例

import matplotlib.pyplot as plt
import cv2

imgFile = "./img/lena.jpg"
img1 = cv2.imread(imgFile, cv2.IMREAD_COLOR)
img2 = cv2.imread(imgFile, cv2.IMREAD_GRAYSCALE)
img3 = cv2.imread(imgFile, cv2.IMREAD_UNCHANGED)
img4 = cv2.imread(imgFile)
# 将opencv中的BGR、GRAY格式转换为RGB,使matplotlib中能正常显示opencv的图像
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2RGB)
img3 = cv2.cvtColor(img3, cv2.COLOR_BGR2RGB)
img4 = cv2.cvtColor(img4, cv2.COLOR_BGR2RGB)
plt.rcParams['font.sans-serif'] = ['FangSong']  # 支持中文标签
plt.subplot(221), plt.title("img1"), plt.axis('off')
plt.imshow(img1)
plt.rcParams['font.sans-serif'] = ['FangSong']  # 支持中文标签
plt.subplot(222), plt.title("img2"), plt.axis('off')
plt.imshow(img2)
plt.rcParams['font.sans-serif'] = ['FangSong']  # 支持中文标签
plt.subplot(223), plt.title("img3"), plt.axis('off')
plt.imshow(img3)
plt.rcParams['font.sans-serif'] = ['FangSong']  # 支持中文标签
plt.subplot(224), plt.title("img4"), plt.axis('off')
plt.imshow(img4)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

11

3. 扩展示例:多张小图合并成一张大图

import cv2  
import numpy as np  
  
# 图像文件路径列表  
image_paths = ['1.jpg', '2.jpg', '3.jpg', '4.jpg']  # 假设这是你的分块图像列表  
  
# 获取第一个图像的大小以确定整个大图的大小  
first_image = cv2.imread(image_paths[0])  
height, width = first_image.shape[:2]  
  
# 创建一个全黑的图像作为背景,大小与整个大图相同  
final_image = np.zeros((height, width, 3), dtype=np.uint8)  
  
# 循环遍历每个分块图像  
for image_path in image_paths:  
    chunk = cv2.imread(image_path)  
      
    # 提取分块图像的坐标  
    chunk_height, chunk_width = chunk.shape[:2]  
    start_i, start_j = image_path.split('_')[-2:]  
    start_i, start_j = int(start_i), int(start_j)  
      
    # 将分块图像写入到最终图像中  
    final_image[start_i:start_i+chunk_height, start_j:start_j+chunk_width] = chunk  
      
    # 释放分块图像占用的内存  
    del chunk  
  
# 保存最终合并的图像  
cv2.imwrite('final_image.jpg', final_image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

4. 总结

  • np.hstacknp.vstack 用于拼接数组,而 matplotlib 用于显示图像。
  • NumPy 的拼接操作通常比 matplotlib 更快,因为 matplotlib 的主要目的不是图像处理。
  • 可以先用 NumPy 进行图像拼接,然后用 matplotlib 来显示结果。
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/360067
推荐阅读
相关标签
  

闽ICP备14008679号