当前位置:   article > 正文

【LeetCode】动态规划 刷题训练(一)_动态规划leetcode练习

动态规划leetcode练习

面试题 08.01. 三步问题

点击查看: 三步问题

三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。

示例1:
输入:n = 3
输出:4
说明: 有四种走法
示例2:
输入:n = 5
输出:13

题目解析

当n==1时
只能从 0走到1 ,即0->1 , 所以只有1 种方法

当n==2时
可以从 0->2 ,有1种 方法
可以从 1->2 , 而0到1 只有1种方法,而1到2只需加一步,所以有2种方法
最终 1+1 ,共有2种方法

当n==3时
从0->3 有1种方法
从1->3 ,因为0->1只有1种方法,而1到3只需加一步 ,所以 有1种方法
从2->3,因为0->2有2种方法 ,而2到3只需加一步,所以有2种方法
最终 1+1+2 ,共有 4种方法

当n==4时
因为 最多一次 走 3步,所以 0->4 不成立
从1->4,因为0->1 有1种方法,而1到4只需加一步,所以有1种方法
从2->4,因为0->2 有2种方法,而2到4只需加一步,所以有2种方法
从3->4,因为0->3有3种方法,而3到4只需加一步,所以有3种方法
最终 1+2+3, 共有7种方法


状态转移方程

以i位置为结尾
dp[i]代表到达i位置时,共有多少种方法


状态转移方程
以 i 位置的状态,最近的一步划分问题

dp[i]分三种情况考虑,
从i-1位置到i位置 即dp[i-1]
从i-2位置到i位置 即dp[i-2]
从i-3位置到i位置 即dp[i-3]

dp[i]= dp[i-1]+dp[i-2]+dp[i-3]

完整代码

class Solution {
public:
    int waysToStep(int n) {
    if(n==1||n==2)
    {
        return n;
    }
    if(n==3)
    {
        return 4;
    }
    vector<int>dp(n+1);
    
    dp[1]=1;
    dp[2]=2;
    dp[3]=4;
    int i=0;
    for(i=4;i<=n;i++)
    {
        dp[i]=( (dp[i-1]+dp[i-2])%1000000007+dp[i-3])%1000000007;
    }
    return  dp[n];
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

在计算状态转移方程时,不能将三个加一起后在取模 ,否则会报错
在 dp[i-1] 与dp[i-2] 相加时就需要取模,然后与dp[i-3]相加时 再取模


746. 使用最小花费爬楼梯

点击查看:使用最小花费爬楼梯

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。

示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

题目解析

在这里插入图片描述
从下标0处开始,可以花费10块 到下标为1处 ,也可以到下标为2处
但是 下标为2处并不是 楼顶,因为此处若为楼顶的话,则最小花费应为10,而不是15 ,
所以楼顶为 cost 数组 最后一个元素的下一个


从下标为1的位置开始,可以到下标为2处,也可以到楼顶处

状态转移方程

dp[i] 代表 达到 i 位置时 的最小花费
而i位置 的最小花费,又是 通过 i-1位置 的最小花费 和 i-2位置的最小花费 综合的最小花费 而得来的


dp[i] 可以分为

1. 先达到i-1位置,支付coost[i-1],走一步
dp[i-1]代表 达到i-1位置的最小花费 ,cost[i-1]代表 i-1位置所需费用
dp[i-1]+cost[i-1]

2. 先达到 i-2位置,支付cost[i-2], 走两步
dp[i-2]代表 达到i-2位置的最小花费 ,cost[i-2]代表 i-2位置所需费用
dp[i-2]+cost[i-2]

动态转移方程
dp[i]= min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);

完整代码

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
      vector<int>dp(cost.size()+1,0);
      dp[0]=0;
      dp[1]=0;
      int i=0;
      for(i=2;i<cost.size()+1;i++)
      {
          dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
      }
      return dp[cost.size()];
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

对于状态转移方程,下标为0和下标为1的位置是没办法使用的,会造成越界
题中说可以选择从0或者1位置开始爬楼梯 代表两个位置是没有花费的
dp[0] =0 ,dp[1]=0

91. 解码方法

点击查看:解码方法

一条包含字母 A-Z 的消息通过以下映射进行了 编码 :
‘A’ -> “1”
‘B’ -> “2”
‘Z’ -> “26”
要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,“11106” 可以映射为:
“AAJF” ,将消息分组为 (1 1 10 6)
“KJF” ,将消息分组为 (11 10 6)
注意,消息不能分组为 (1 11 06) ,因为 “06” 不能映射为 “F” ,这是由于 “6” 和 “06” 在映射中并不等价。
给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。
题目数据保证答案肯定是一个 32 位 的整数。

示例 1:
输入:s = “12”
输出:2
解释:它可以解码为 “AB”(1 2)或者 “L”(12)。

示例 3:
输入:s = “06”
输出:0
解释:“06” 无法映射到 “F” ,因为存在前导零(“6” 和 “06” 并不等价)。

题目解析

若将其 分为1和2,则 分别对应 A和B
若 将其看作一个整体,则 对应为L


若将其分为0和6,则0没有对应字母
若将其 看作一个整体,不允许 存在前导0 表示

状态转移方程

dp[i] 表示 以i位置为结尾时,解码方法的总数

情况1:让i位置的数,单独去解码

单独解码的数 需要在1-9,所以会存在 成功/失败的情况

若解码成功,则i位置对应的数字 为1-9之间,相当于把0到i-1位置的所有解码方案 后面加上一个字符,
整体解码的数量就为以i-1位置结尾的数量 即dp[i-1]

若解码失败,则全部失败 ,解码数为0
如: 60 单独计算,6为F,而0不存在 对应数, 所以没有解码成功

情况2:让i位置的数 和i-1位置的数 结合 一起去解码

若解码成功,则结合的数字 为 10-26之间,相当于在0到i-2位置的所有解码方案 后面加上一个字符,
整体解码的数量就为 以i-2结尾的的数量 即dp[i-2]

若解码失败,则全部失败 ,解码数为0


dp[i]=dp[i-1]+dp[i-2]
dp[i-1] 和dp[i-2]只有在解码成功时,才会加上,否则为0

完整代码

class Solution {
public:
    int numDecodings(string s) {
       vector<int>dp(s.size());
        int i=0;

        //初始化
        if(s[0]!='0')
        {
            dp[0]=1;
        }
        else 
        {
            dp[0]=0;
        }
        
        //有可能s字符串只有一个数字 
        if(s.size()==1)
        {
            return dp[0];
        }

       if(s[0]!='0'&&s[1]!='0')
       {
           dp[1]++;
       }
       //因为s[0]存的是字符,所以选哟减去'0',从而获取数字
       int sum=(s[0]-'0')*10+(s[1]-'0');
       if(sum>=10&&sum<=26)
       {
           dp[1]++;
       }

        for(i=2;i<s.size();i++)
        {
            //说明可以单独编码成功
           if(s[i]!='0')
           {
             dp[i]+=dp[i-1];
           }

             //说明可以结合编码成功
            int sum=(s[i-1]-'0')*10+(s[i]-'0');
         
            if(sum>=10&&sum<=26)
            {
                dp[i]+=dp[i-2];
            }

        }
        return dp[s.size()-1];
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53

初始化
dp[0] 表示 只有一个数字
若数字 处于1-9之间,则解码成功,返回1
若数字 为0,则解码失败 ,返回0

dp[1] 表示 两个数字
可以分为 两个数字 单独解码 和 结合起来解码

若 单独解码 成功,则解码数+1,否则为0
若结合起来解码 成功,则解码数+1,否则为0
所以有 0 1 2 三种情况

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/365560
推荐阅读
相关标签
  

闽ICP备14008679号