当前位置:   article > 正文

【面试经典150 | 动态规划】交错字符串

【面试经典150 | 动态规划】交错字符串

写在前面

本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更……

专栏内容以分析题目为主,并附带一些对于本题涉及到的数据结构等内容进行回顾与总结,文章结构大致如下,部分内容会有增删:

  • Tag:介绍本题牵涉到的知识点、数据结构;
  • 题目来源:贴上题目的链接,方便大家查找题目并完成练习;
  • 题目解读:复述题目(确保自己真的理解题目意思),并强调一些题目重点信息;
  • 解题思路:介绍一些解题思路,每种解题思路包括思路讲解、实现代码以及复杂度分析;
  • 知识回忆:针对今天介绍的题目中的重点内容、数据结构进行回顾总结。

Tag

动态规划】【字符串】


题目来源

97. 交错字符串


解题思路

方法一:动态规划

首先进行特判,记字符串 s1 的长度、字符串 s2 的长度、字符串 s3 的长度分别为 mnt。如果 m + n != t,那么 s3 一定无法由 s1s2 交错组成。

定义状态

m + n = t 时,定义 f[i][j] 表示 s1 的前 i 个字符和 s2 的前 j 字符是否能交错组成 s3 的前 i+j 个字符。

转移关系

如果 s1 的第 i 个字符和 s3 的第 i+j 个字符相同,那么 s1 的前 i 个字符和 s2 的前 j 字符是否能交错组成 s3 的前 i+j 个字符 取决于 s1 的前 i-1 个字符和 s2 的前 j 字符是否能交错组成 s3 的前 i+j-1 个字符,即有:

KaTeX parse error: Expected 'EOF', got '&' at position 22: …j] = f[i-1][j] &̲ (s_1[i-1] == s…

同理,如果 s2 的第 j 个字符和 s3 的第 i+j 个字符相同,那么 s1 的前 i 个字符和 s2 的前 j 字符是否能交错组成 s3 的前 i+j 个字符 取决于 s1 的前 i 个字符和 s2 的前 j-1 字符是否能交错组成 s3 的前 i+j-1 个字符,即有:

KaTeX parse error: Expected 'EOF', got '&' at position 22: …j] = f[i][j-1] &̲ (s_2[j-1] == s…

base case

边界条件为 f[0][0] = true

最后返回

最终返回 f[m][n]表示字符串 s3 是否可以右字符串 s1s2 交错形成。

朴素实现代码

class Solution {
public:
    bool isInterleave(string s1, string s2, string s3) {
        int m = s1.size(), n = s2.size(), t = s3.size();
        if (m + n != t) return false;

        vector<vector<int>> f(m+1, vector<int>(n+1, false));

        f[0][0] = true; // base case 空字符串可以交错形成空字符串
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int p = i + j - 1;
                if (i > 0) {
                    f[i][j] |= f[i-1][j] && (s1[i-1] == s3[p]);
                }
                if (j > 0) {
                    f[i][j] |= f[i][j-1] && (s2[j-1] == s3[p]);
                }
            }
        }
        return f[m][n];
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

使用滚动数组优化空间复杂度。 因为这里数组 f 的第 i 行只和第 i−1 行相关,所以我们可以用滚动数组优化这个动态规划,这样空间复杂度可以变成 O ( m ) O(m) O(m)

空间优化代码

class Solution {
public:
    bool isInterleave(string s1, string s2, string s3) {
        int m = s1.size(), n = s2.size(), t = s3.size();
        if (m + n != t) return false;

        vector<int> f(n+1, false);

        f[0] = true; // base case 空字符串可以交错形成空字符串
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int p = i + j - 1;
                if (i > 0) {
                    f[j] &= (s1[i-1] == s3[p]);
                }
                if (j > 0) {
                    f[j] |= f[j-1] && (s2[j-1] == s3[p]);
                }
            }
        }
        return f[n];
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

复杂度分析

时间复杂度: O ( m n ) O(mn) O(mn) m m m 为字符串 s1 的长度, n n n 为字符串 s2 的长度。

空间复杂度:按行进行滚动数组优化后的空间复杂度为 O ( m ) O(m) O(m),朴素动态规划的时间复杂度为 O ( m n ) O(mn) O(mn)


写在最后

如果您发现文章有任何错误或者对文章有任何疑问,欢迎私信博主或者在评论区指出

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/479725
推荐阅读
相关标签