赞
踩
单线程版本适合本地调试,多线程版本适合做压测
- <dependency>
- <groupId>org.apache.kafka</groupId>
- <artifactId>kafka-clients</artifactId>
- <version>1.1.0</version>
- </dependency>
单线程版
- public class MsgProducer {
- public static void main(String[] args) throws InterruptedException, ExecutionException {
- Properties props = new Properties();
- props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.60:9092,192.168.0.60:9093,192.168.0.60:9094");
- /*
- 发出消息持久化机制参数
- (1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。
- (2)acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入。就可以继续发送下一条消息。这种情况下,如果follower没有成功备份数据,而此时leader
- 又挂掉,则消息会丢失。
- (3)acks=-1或all: 这意味着leader需要等待所有备份(min.insync.replicas配置的备份个数)都成功写入日志,这种策略会保证只要有一个备份存活就不会丢失数据。
- 这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。
- */
- props.put(ProducerConfig.ACKS_CONFIG, "1");
- //发送失败会重试,默认重试间隔100ms,重试能保证消息发送的可靠性,但是也可能造成消息重复发送,比如网络抖动,所以需要在接收者那边做好消息接收的幂等性处理
- props.put(ProducerConfig.RETRIES_CONFIG, 3);
- //重试间隔设置
- props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);
- //设置发送消息的本地缓冲区,如果设置了该缓冲区,消息会先发送到本地缓冲区,可以提高消息发送性能,默认值是33554432,即32MB
- props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
- //kafka本地线程会从缓冲区取数据,批量发送到broker,
- //设置批量发送消息的大小,默认值是16384,即16kb,就是说一个batch满了16kb就发送出去
- props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
- //默认值是0,意思就是消息必须立即被发送,但这样会影响性能
- //一般设置100毫秒左右,就是说这个消息发送完后会进入本地的一个batch,如果100毫秒内,这个batch满了16kb就会随batch一起被发送出去
- //如果100毫秒内,batch没满,那么也必须把消息发送出去,不能让消息的发送延迟时间太长
- props.put(ProducerConfig.LINGER_MS_CONFIG, 100);
- //把发送的key从字符串序列化为字节数组
- props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
- //把发送消息value从字符串序列化为字节数组
- props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
-
- Producer<String, String> producer = new KafkaProducer<>(props);
-
- int msgNum = 5;
- CountDownLatch countDownLatch = new CountDownLatch(msgNum);
- for (int i = 1; i <= msgNum; i++) {
- Order order = new Order(i, 100 + i, 1, 1000.00);
- //指定发送分区
- ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>("order-topic"
- , 0, order.getOrderId().toString(), JSON.toJSONString(order));
- //未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNum
- /*ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>("my-replicated-topic"
- , order.getOrderId().toString(), JSON.toJSONString(order));*/
-
- //等待消息发送成功的同步阻塞方法
- /*RecordMetadata metadata = producer.send(producerRecord).get();
- System.out.println("同步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
- + metadata.partition() + "|offset-" + metadata.offset());*/
-
- //异步方式发送消息
- producer.send(producerRecord, new Callback() {
- @Override
- public void onCompletion(RecordMetadata metadata, Exception exception) {
- if (exception != null) {
- System.err.println("发送消息失败:" + exception.getStackTrace());
-
- }
- if (metadata != null) {
- System.out.println("异步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
- + metadata.partition() + "|offset-" + metadata.offset());
- }
- countDownLatch.countDown();
- }
- });
-
- //送积分 TODO
-
- }
-
- countDownLatch.await(5, TimeUnit.SECONDS);
- producer.close();
- }
- }

多线程版
- package com.test.kafka;
-
- import org.apache.kafka.clients.producer.*;
- import org.apache.kafka.common.serialization.StringSerializer;
-
- import java.util.Properties;
- import java.util.concurrent.CountDownLatch;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
-
- public class MsgProducer {
-
- //发送消息的个数
- private static final int MSG_SIZE = 500000;
- //负责发送消息的线程池
- private static ExecutorService executorService = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors());
- private static CountDownLatch countDownLatch = new CountDownLatch(MSG_SIZE);
-
-
- /*发送消息的任务*/
- private static class ProduceWorker implements Runnable {
-
- private ProducerRecord<String, String> record;
- private KafkaProducer<String, String> producer;
-
- public ProduceWorker(ProducerRecord<String, String> record, KafkaProducer<String, String> producer) {
- this.record = record;
- this.producer = producer;
- }
-
- public void run() {
- final String id = Thread.currentThread().getId() + "-" + System.identityHashCode(producer);
- try {
- producer.send(record, new Callback() {
- public void onCompletion(RecordMetadata metadata, Exception exception) {
- if (null != exception) {
- exception.printStackTrace();
- }
- if (null != metadata) {
- System.out.println(id + "|"
- + String.format("偏移量:%s,分区:%s",
- metadata.offset(), metadata.partition()));
- }
- }
- });
- System.out.println(id + ":数据[" + record.key() + "-" + record.value() + "]已发送。");
- countDownLatch.countDown();
- } catch (Exception e) {
- e.printStackTrace();
- }
- }
- }
-
- public static void main(String[] args) {
- // 消费主题
- String topicName = "test_datax_kafka_read";
- Properties properties = new Properties();
- properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "10.254.21.6:59292,10.254.21.1:59292,10.254.21.2:59292");
- properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
- properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
- KafkaProducer<String, String> producer = new KafkaProducer(properties);
-
- try {
- //循环发送,通过线程池的方式
- for (int i = 0; i < MSG_SIZE; i++) {
-
- ProducerRecord<String, String> record = new ProducerRecord(
- topicName,
- null,
- "{\"data\":[{\"byteSize\":5,\"rawData\":28108,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":60,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":99,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":70,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":31,\"type\":\"LONG\"},{\"byteSize\":1,\"rawData\":0,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":82,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":94,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":70,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":22,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":10,\"type\":\"LONG\"},{\"byteSize\":1,\"rawData\":1,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":89,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":14,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":38,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":20,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":50,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":30,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":13,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":36,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":53,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":42,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":11,\"type\":\"LONG\"},{\"byteSize\":1,\"rawData\":4,\"type\":\"LONG\"},{\"byteSize\":1,\"rawData\":6,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":49,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":35,\"type\":\"LONG\"},{\"byteSize\":1,\"rawData\":4,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":48,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":46,\"type\":\"LONG\"},{\"byteSize\":1,\"rawData\":1,\"type\":\"LONG\"},{\"byteSize\":2,\"rawData\":73,\"type\":\"LONG\"},{\"byteSize\":1,\"rawData\":6,\"type\":\"LONG\"},{\"byteSize\":8,\"rawData\":1659515670000,\"subType\":\"DATETIME\",\"type\":\"DATE\"}],\"size\":34}\n"
- );
- executorService.submit(new ProduceWorker(record, producer));
- }
- countDownLatch.await();
- } catch (Exception e) {
- e.printStackTrace();
- } finally {
- producer.close();
- executorService.shutdown();
- }
- }
- }
-

单线程版
- public class MsgConsumer {
- public static void main(String[] args) {
- Properties props = new Properties();
- props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.60:9092,192.168.0.60:9093,192.168.0.60:9094");
- // 消费分组名
- props.put(ConsumerConfig.GROUP_ID_CONFIG, "testGroup");
- // 是否自动提交offset
- /*props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
- // 自动提交offset的间隔时间
- props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG , "1000");*/
- props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
- /*
- 心跳时间,服务端broker通过心跳确认consumer是否故障,如果发现故障,就会通过心跳下发
- rebalance的指令给其他的consumer通知他们进行rebalance操作,这个时间可以稍微短一点
- */
- props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);
- //服务端broker多久感知不到一个consumer心跳就认为他故障了,默认是10秒
- props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);
- /*
- 如果两次poll操作间隔超过了这个时间,broker就会认为这个consumer处理能力太弱,
- 会将其踢出消费组,将分区分配给别的consumer消费
- */
- props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);
- props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
- props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
- KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
- // 消费主题
- String topicName = "order-topic";
- //consumer.subscribe(Arrays.asList(topicName));
- // 消费指定分区
- //consumer.assign(Arrays.asList(new TopicPartition(topicName, 0)));
-
- //消息回溯消费
- consumer.assign(Arrays.asList(new TopicPartition(topicName, 0)));
- consumer.seekToBeginning(Arrays.asList(new TopicPartition(topicName, 0)));
- //指定offset消费
- //consumer.seek(new TopicPartition(topicName, 0), 10);
-
- while (true) {
- /*
- * poll() API 是拉取消息的长轮询,主要是判断consumer是否还活着,只要我们持续调用poll(),
- * 消费者就会存活在自己所在的group中,并且持续的消费指定partition的消息。
- * 底层是这么做的:消费者向server持续发送心跳,如果一个时间段(session.
- * timeout.ms)consumer挂掉或是不能发送心跳,这个消费者会被认为是挂掉了,
- * 这个Partition也会被重新分配给其他consumer
- */
- ConsumerRecords<String, String> records = consumer.poll(Integer.MAX_VALUE);
- for (ConsumerRecord<String, String> record : records) {
- System.out.printf("收到消息:offset = %d, key = %s, value = %s%n", record.offset(), record.key(),
- record.value());
- }
-
- if (records.count() > 0) {
- // 提交offset
- consumer.commitSync();
- }
- }
- }
- }

多线程版
- package com.test.kafka;
-
- import org.apache.kafka.clients.consumer.ConsumerConfig;
- import org.apache.kafka.clients.consumer.ConsumerRecord;
- import org.apache.kafka.clients.consumer.ConsumerRecords;
- import org.apache.kafka.clients.consumer.KafkaConsumer;
- import org.apache.kafka.common.serialization.StringDeserializer;
-
- import java.time.Duration;
- import java.util.Arrays;
- import java.util.Properties;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
-
- public class MsgConsumer {
-
-
- private static ExecutorService receiveMsgExecutorService = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors());
-
- public static void main(String[] args) {
- // 消费主题
- String topicName = "test_datax_kafka_read";
-
- int consumerThreadNum = 12;
- for (int i = 0; i < consumerThreadNum; i++) {
- receiveMsgExecutorService.submit(new KafkaConsumerThread(initConfig(), topicName));
- }
- }
-
- public static Properties initConfig() {
- Properties properties = new Properties();
- properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "10.254.21.6:59292,10.254.21.1:59292,10.254.21.2:59292");
- // 消费分组名
- properties.put(ConsumerConfig.GROUP_ID_CONFIG, "local-test-2");
- // 是否自动提交offset
- properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
- // 自动提交offset的间隔时间
- properties.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
- // 心跳时间,服务端broker通过心跳确认consumer是否故障,如果发现故障,
- // 就会通过心跳下发rebalance的指令给其他的consumer通知他们进行rebalance操作,这个时间可以稍微短一点
- properties.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);
- // 服务端broker多久感知不到一个consumer心跳就认为他故障了,默认是10秒
- properties.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);
- // 如果两次poll操作间隔超过了这个时间,broker就会认为这个consumer处理能力太弱,
- // 会将其踢出消费组,将分区分配给别的consumer消费
- properties.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);
-
- properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
- properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
- return properties;
- }
-
-
- static class KafkaConsumerThread implements Runnable {
- private KafkaConsumer<String, String> kafkaConsumer;
-
- public KafkaConsumerThread(Properties properties, String topic) {
- this.kafkaConsumer = new KafkaConsumer<String, String>(properties);
- this.kafkaConsumer.subscribe(Arrays.asList(topic));
- }
-
- @Override
- public void run() {
- try {
- int consumerCount = 0;
- int lastConsumerCount = 0;
- long lastTime = System.currentTimeMillis();
- while (true) {
- ConsumerRecords<String, String> records = kafkaConsumer.poll(Duration.ofMillis(1000));
- for (ConsumerRecord<String, String> record : records) {
- //处理消息模块
- System.out.printf("收到消息:partition = %d, offset = %d, key = %s, value = %s%n", record.partition(), record.offset(), record.key(), record.value());
- consumerCount++;
- }
- System.out.println("consumerCount:" + consumerCount);
-
- long thisTime = System.currentTimeMillis();
- long speedTime = thisTime - lastTime;
- if (speedTime >= 1000L) {
- lastTime = thisTime;
- long speedCount = (consumerCount - lastConsumerCount)/(speedTime /1000L);
- lastConsumerCount = consumerCount;
- if (speedCount > 10) {
- System.out.println("消费速度:" + speedCount + "条/s");
- }
- }
- }
- } catch (Exception e) {
- e.printStackTrace();
- } finally {
- kafkaConsumer.close();
- }
- }
- }
-
- }

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。